Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 57488 by Abdo msup. last updated on 05/Apr/19

let A_n =∫_0 ^n    ((t[t])/(3+t^2 ))dt  1)calculate lim_(n→+∞)   A_n   2) find nature if Σ A_n

$${let}\:{A}_{{n}} =\int_{\mathrm{0}} ^{{n}} \:\:\:\frac{{t}\left[{t}\right]}{\mathrm{3}+{t}^{\mathrm{2}} }{dt} \\ $$$$\left.\mathrm{1}\right){calculate}\:{lim}_{{n}\rightarrow+\infty} \:\:{A}_{{n}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{nature}\:{if}\:\Sigma\:{A}_{{n}} \\ $$

Commented by maxmathsup by imad last updated on 06/Apr/19

1) we have A_n =Σ_(k=0) ^(n−1)  ∫_k ^(k+1)     ((tk)/(3+t^2 )) dt =Σ_(k=0) ^(n−1)  k  ∫_k ^(k+1)  ((tdt)/(t^2  +3))  =(1/2)Σ_(k=0) ^(n−1)  k [ ln(t^2  +3)]_k ^(k+1)  =(1/2) Σ_(k=0) ^(n−1)  k ln{(((k+1)^2  +3)/(k^2  +3))}  =(1/2) Σ_(k=0) ^(n−1)  k ln{((k^2  +3 +2k)/(k^2  +3))} =(1/2) Σ_(k=1) ^(n−1)  k ln{ 1+((2k)/(k^2  +3))} .  =(1/2){ln(1+(2/4)) +2 ln( 1+(4/7)) +3 ln(1+(6/(12)))+....+(n−1)ln(1+((2n−2)/((n−1)^2  +3)))}

$$\left.\mathrm{1}\right)\:{we}\:{have}\:{A}_{{n}} =\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\int_{{k}} ^{{k}+\mathrm{1}} \:\:\:\:\frac{{tk}}{\mathrm{3}+{t}^{\mathrm{2}} }\:{dt}\:=\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:{k}\:\:\int_{{k}} ^{{k}+\mathrm{1}} \:\frac{{tdt}}{{t}^{\mathrm{2}} \:+\mathrm{3}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:{k}\:\left[\:{ln}\left({t}^{\mathrm{2}} \:+\mathrm{3}\right)\right]_{{k}} ^{{k}+\mathrm{1}} \:=\frac{\mathrm{1}}{\mathrm{2}}\:\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:{k}\:{ln}\left\{\frac{\left({k}+\mathrm{1}\right)^{\mathrm{2}} \:+\mathrm{3}}{{k}^{\mathrm{2}} \:+\mathrm{3}}\right\} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\:\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:{k}\:{ln}\left\{\frac{{k}^{\mathrm{2}} \:+\mathrm{3}\:+\mathrm{2}{k}}{{k}^{\mathrm{2}} \:+\mathrm{3}}\right\}\:=\frac{\mathrm{1}}{\mathrm{2}}\:\sum_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} \:{k}\:{ln}\left\{\:\mathrm{1}+\frac{\mathrm{2}{k}}{{k}^{\mathrm{2}} \:+\mathrm{3}}\right\}\:. \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left\{{ln}\left(\mathrm{1}+\frac{\mathrm{2}}{\mathrm{4}}\right)\:+\mathrm{2}\:{ln}\left(\:\mathrm{1}+\frac{\mathrm{4}}{\mathrm{7}}\right)\:+\mathrm{3}\:{ln}\left(\mathrm{1}+\frac{\mathrm{6}}{\mathrm{12}}\right)+....+\left({n}−\mathrm{1}\right){ln}\left(\mathrm{1}+\frac{\mathrm{2}{n}−\mathrm{2}}{\left({n}−\mathrm{1}\right)^{\mathrm{2}} \:+\mathrm{3}}\right)\right\} \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 06/Apr/19

∫_0 ^n ((t[t])/(3+t^2 ))dt  (1/2)∫_0 ^1 ((d(3+t^2 ))/(3+t^2 ))×0+(1/2)∫_1 ^2 ((d(3+t^2 ))/(3+t^2 ))×1+(1/2)∫_2 ^3 ((d(3+t^2 ))/(3+t^2 ))×2dt+...+(1/2)∫_(n−1) ^n ((d(3+t^2 ))/(3+t^2 ))×(n−1)dt  =(1/2)[0×∣ln(3+t^2 )∣_0 ^1 +1×∣ln(3+t^2 )∣_1 ^2 +2×∣ln(3+t^2 )∣_2 ^3 +..+(n−1)∣ln(3+t^2 )∣_(n−1) ^n ]  =(1/2)Σ_(n=1) ^n (n−1)ln{((3+n^2 )/(3+(n−1)^2 ))}

$$\int_{\mathrm{0}} ^{{n}} \frac{{t}\left[{t}\right]}{\mathrm{3}+{t}^{\mathrm{2}} }{dt} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{d}\left(\mathrm{3}+{t}^{\mathrm{2}} \right)}{\mathrm{3}+{t}^{\mathrm{2}} }×\mathrm{0}+\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{1}} ^{\mathrm{2}} \frac{{d}\left(\mathrm{3}+{t}^{\mathrm{2}} \right)}{\mathrm{3}+{t}^{\mathrm{2}} }×\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{2}} ^{\mathrm{3}} \frac{{d}\left(\mathrm{3}+{t}^{\mathrm{2}} \right)}{\mathrm{3}+{t}^{\mathrm{2}} }×\mathrm{2}{dt}+...+\frac{\mathrm{1}}{\mathrm{2}}\int_{{n}−\mathrm{1}} ^{{n}} \frac{{d}\left(\mathrm{3}+{t}^{\mathrm{2}} \right)}{\mathrm{3}+{t}^{\mathrm{2}} }×\left({n}−\mathrm{1}\right){dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left[\mathrm{0}×\mid{ln}\left(\mathrm{3}+{t}^{\mathrm{2}} \right)\mid_{\mathrm{0}} ^{\mathrm{1}} +\mathrm{1}×\mid{ln}\left(\mathrm{3}+{t}^{\mathrm{2}} \right)\mid_{\mathrm{1}} ^{\mathrm{2}} +\mathrm{2}×\mid{ln}\left(\mathrm{3}+{t}^{\mathrm{2}} \right)\mid_{\mathrm{2}} ^{\mathrm{3}} +..+\left({n}−\mathrm{1}\right)\mid{ln}\left(\mathrm{3}+{t}^{\mathrm{2}} \right)\mid_{{n}−\mathrm{1}} ^{{n}} \right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\underset{{n}=\mathrm{1}} {\overset{{n}} {\sum}}\left({n}−\mathrm{1}\right){ln}\left\{\frac{\mathrm{3}+{n}^{\mathrm{2}} }{\mathrm{3}+\left({n}−\mathrm{1}\right)^{\mathrm{2}} }\right\} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com