Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 57617 by tanmay.chaudhury50@gmail.com last updated on 08/Apr/19

Commented by tanmay.chaudhury50@gmail.com last updated on 08/Apr/19

source Hall andknight  algebra

sourceHallandknightalgebra

Answered by tanmay.chaudhury50@gmail.com last updated on 09/Apr/19

28)(a_1 /(1+a_1 ))=1−(1/(1+a_1 ))  (a_2 /((1+a_1 )×(1+a_2 )))−(1/(1+a_1 ))=((a_2 −1−a_2 )/((1+a_1 )(1+a_2 )))=−(1/((1+a_1 )(1+a_2 )))  (a_3 /((1+a_1 )(1+a_2 )(1+a_3 )))−(1/((1+a_1 )(1+a_2 )))=−(1/((1+a_1 )(1+a_2 )(1+a_3 )))  ....  ....  now add them  so required sum is  S=1−(1/((1+a_1 )(1+a_2 )(1+a_3 )....(1+a_n )))

28)a11+a1=111+a1a2(1+a1)×(1+a2)11+a1=a21a2(1+a1)(1+a2)=1(1+a1)(1+a2)a3(1+a1)(1+a2)(1+a3)1(1+a1)(1+a2)=1(1+a1)(1+a2)(1+a3)........nowaddthemsorequiredsumisS=11(1+a1)(1+a2)(1+a3)....(1+an)

Answered by tanmay.chaudhury50@gmail.com last updated on 09/Apr/19

26)(1/(1+x))+(1/(1−x))=(2/(1−x^2 ))       (2/(1+x^2 ))+(2/(1−x^2 ))=(4/(1−x^4 ))       (4/(1+x^4 ))+(4/(1−x^4 ))=(8/(1−x^8 ))  .....  ....  add them   S+(1/(1−x))=(2^n /(1−x^2^n  ))  S=−(1/(1−x))+(2^n /(1−x^2^n  ))

26)11+x+11x=21x221+x2+21x2=41x441+x4+41x4=81x8.........addthemS+11x=2n1x2nS=11x+2n1x2n

Answered by tanmay.chaudhury50@gmail.com last updated on 09/Apr/19

27)    (x/(1−x^2 ))+(1/(1−x^2 ))=((x+1)/(1−x^2 ))=(1/(1−x))  (x^2 /(1−x^4 ))+(1/(1−x^4 ))=((x^2 +1)/(1−x^4 ))=(1/(1−x^2 ))  that means  (x/(1−x^2 ))=(1/(1−x))−(1/(1−x^2 ))  (x^2 /(1−x^4 ))=(1/(1−x^2 ))−(1/(1−x^4 ))  ...  ...  (x^2^(n−1)  /(1−x^2^n  ))=(1/(1−x^2^(n−1)  ))−(1/(1−x^2^n  ))  add them  S=(1/(1−x))−(1/(1−x^2^n  ))

27)x1x2+11x2=x+11x2=11xx21x4+11x4=x2+11x4=11x2thatmeansx1x2=11x11x2x21x4=11x211x4......x2n11x2n=11x2n111x2naddthemS=11x11x2n

Terms of Service

Privacy Policy

Contact: info@tinkutara.com