Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 57635 by Tawa1 last updated on 09/Apr/19

Find the sum of the cubes of first n even number,  and  first n odd number.

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{cubes}\:\mathrm{of}\:\mathrm{first}\:\mathrm{n}\:\mathrm{even}\:\mathrm{number},\:\:\mathrm{and} \\ $$$$\mathrm{first}\:\mathrm{n}\:\mathrm{odd}\:\mathrm{number}. \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 09/Apr/19

As per higher algebra Bernard and child  we can find   s_r =1^r +2^r +3^r +...+n^r   by intregation snd intregation constant  as Bernuli numbers  example  s_1 =1+2+3+...+n  =((n(n+1))/2)=(n^2 /2)+(n/2)  now to find S_2 =1^2 +2^2 +3^2 +...+n^2   using S_1   S_r =r∫S_(r−1) dn+nB_r ←formula  S_2 =2∫((n^2 /2)+(n/2))+n×(1/6) [B_2 =(1/6)]  =2((n^3 /6)+(n^2 /4))+n×(1/6)  =(n^3 /3)+(n^2 /2)+(n/6)  =((2n^3 +3n^2 +n)/6)  =(n/6)×(2n^2 +2n+n+1)  =(n/6)×{2n(n+1)+1(n+1)}  =((n(n+1)(2n+1))/6)  similarly  S_3 =3∫S_2 dn+nB_3   =3∫((n^3 /3)+(n^2 /2)+(n/6))dn+n×0  =(n^4 /4)+(n^3 /2)+(n^2 /4)  =((n^4 +2n^3 +n^2 )/4)  =((n^2 (n^2 +2n+1))/4)  ={((n(n+1))/2)}^2   thus you can find...

$${As}\:{per}\:{higher}\:{algebra}\:{Bernard}\:{and}\:{child} \\ $$$${we}\:{can}\:{find}\: \\ $$$${s}_{{r}} =\mathrm{1}^{{r}} +\mathrm{2}^{{r}} +\mathrm{3}^{{r}} +...+{n}^{{r}} \\ $$$${by}\:{intregation}\:{snd}\:{intregation}\:{constant} \\ $$$${as}\:{Bernuli}\:{numbers} \\ $$$${example} \\ $$$${s}_{\mathrm{1}} =\mathrm{1}+\mathrm{2}+\mathrm{3}+...+{n} \\ $$$$=\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}}=\frac{{n}^{\mathrm{2}} }{\mathrm{2}}+\frac{{n}}{\mathrm{2}} \\ $$$${now}\:{to}\:{find}\:{S}_{\mathrm{2}} =\mathrm{1}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} +...+{n}^{\mathrm{2}} \\ $$$${using}\:{S}_{\mathrm{1}} \\ $$$${S}_{{r}} ={r}\int{S}_{{r}−\mathrm{1}} {dn}+{nB}_{{r}} \leftarrow{formula} \\ $$$${S}_{\mathrm{2}} =\mathrm{2}\int\left(\frac{{n}^{\mathrm{2}} }{\mathrm{2}}+\frac{{n}}{\mathrm{2}}\right)+{n}×\frac{\mathrm{1}}{\mathrm{6}}\:\left[{B}_{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{6}}\right] \\ $$$$=\mathrm{2}\left(\frac{{n}^{\mathrm{3}} }{\mathrm{6}}+\frac{{n}^{\mathrm{2}} }{\mathrm{4}}\right)+{n}×\frac{\mathrm{1}}{\mathrm{6}} \\ $$$$=\frac{{n}^{\mathrm{3}} }{\mathrm{3}}+\frac{{n}^{\mathrm{2}} }{\mathrm{2}}+\frac{{n}}{\mathrm{6}} \\ $$$$=\frac{\mathrm{2}{n}^{\mathrm{3}} +\mathrm{3}{n}^{\mathrm{2}} +{n}}{\mathrm{6}} \\ $$$$=\frac{{n}}{\mathrm{6}}×\left(\mathrm{2}{n}^{\mathrm{2}} +\mathrm{2}{n}+{n}+\mathrm{1}\right) \\ $$$$=\frac{{n}}{\mathrm{6}}×\left\{\mathrm{2}{n}\left({n}+\mathrm{1}\right)+\mathrm{1}\left({n}+\mathrm{1}\right)\right\} \\ $$$$=\frac{{n}\left({n}+\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{1}\right)}{\mathrm{6}} \\ $$$${similarly} \\ $$$${S}_{\mathrm{3}} =\mathrm{3}\int{S}_{\mathrm{2}} {dn}+{nB}_{\mathrm{3}} \\ $$$$=\mathrm{3}\int\left(\frac{{n}^{\mathrm{3}} }{\mathrm{3}}+\frac{{n}^{\mathrm{2}} }{\mathrm{2}}+\frac{{n}}{\mathrm{6}}\right){dn}+{n}×\mathrm{0} \\ $$$$=\frac{{n}^{\mathrm{4}} }{\mathrm{4}}+\frac{{n}^{\mathrm{3}} }{\mathrm{2}}+\frac{{n}^{\mathrm{2}} }{\mathrm{4}} \\ $$$$=\frac{{n}^{\mathrm{4}} +\mathrm{2}{n}^{\mathrm{3}} +{n}^{\mathrm{2}} }{\mathrm{4}} \\ $$$$=\frac{{n}^{\mathrm{2}} \left({n}^{\mathrm{2}} +\mathrm{2}{n}+\mathrm{1}\right)}{\mathrm{4}} \\ $$$$=\left\{\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}}\right\}^{\mathrm{2}} \\ $$$${thus}\:{you}\:{can}\:{find}... \\ $$$$ \\ $$

Commented by Tawa1 last updated on 09/Apr/19

God bless you sir. I appreciate.

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}.\:\mathrm{I}\:\mathrm{appreciate}. \\ $$

Answered by mr W last updated on 09/Apr/19

S_E =Σ_(k=1) ^n (2k)^3 =8Σ_(k=1) ^n k^3 =8×((n^2 (n+1)^2 )/4)  =2n^2 (n+1)^2     S_O =Σ_(k=1) ^n (2k−1)^3 =Σ_(k=1) ^n (8k^3 −12k^2 +6k−1)=8×((n^2 (n+1)^2 )/4)−12×((n(n+1)(2n+1))/6)+6×((n(n+1))/2)−n  =n^2 (2n^2 −1)

$${S}_{{E}} =\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left(\mathrm{2}{k}\right)^{\mathrm{3}} =\mathrm{8}\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{k}^{\mathrm{3}} =\mathrm{8}×\frac{{n}^{\mathrm{2}} \left({n}+\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{4}} \\ $$$$=\mathrm{2}{n}^{\mathrm{2}} \left({n}+\mathrm{1}\right)^{\mathrm{2}} \\ $$$$ \\ $$$${S}_{{O}} =\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left(\mathrm{2}{k}−\mathrm{1}\right)^{\mathrm{3}} =\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left(\mathrm{8}{k}^{\mathrm{3}} −\mathrm{12}{k}^{\mathrm{2}} +\mathrm{6}{k}−\mathrm{1}\right)=\mathrm{8}×\frac{{n}^{\mathrm{2}} \left({n}+\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{4}}−\mathrm{12}×\frac{{n}\left({n}+\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{1}\right)}{\mathrm{6}}+\mathrm{6}×\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}}−{n} \\ $$$$={n}^{\mathrm{2}} \left(\mathrm{2}{n}^{\mathrm{2}} −\mathrm{1}\right) \\ $$

Commented by Tawa1 last updated on 09/Apr/19

Wow, God bless you sir.  I appreciate.

$$\mathrm{Wow},\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}.\:\:\mathrm{I}\:\mathrm{appreciate}. \\ $$

Commented by Tawa1 last updated on 09/Apr/19

But sir, i have a question.      Please see this question.                simplify:     (((√(10 + (√1)))  +  (√(10 + (√2)))  + ... + (√(10 + (√(99)))))/((√(10 − (√1)))  + (√(10 − (√2)))  + ... + (√(10 − (√(99))))))  Answer:    (√2)  +  1

$$\mathrm{But}\:\mathrm{sir},\:\mathrm{i}\:\mathrm{have}\:\mathrm{a}\:\mathrm{question}. \\ $$$$\:\:\:\:\mathrm{Please}\:\mathrm{see}\:\mathrm{this}\:\mathrm{question}.\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{simplify}:\:\:\:\:\:\frac{\sqrt{\mathrm{10}\:+\:\sqrt{\mathrm{1}}}\:\:+\:\:\sqrt{\mathrm{10}\:+\:\sqrt{\mathrm{2}}}\:\:+\:...\:+\:\sqrt{\mathrm{10}\:+\:\sqrt{\mathrm{99}}}}{\sqrt{\mathrm{10}\:−\:\sqrt{\mathrm{1}}}\:\:+\:\sqrt{\mathrm{10}\:−\:\sqrt{\mathrm{2}}}\:\:+\:...\:+\:\sqrt{\mathrm{10}\:−\:\sqrt{\mathrm{99}}}} \\ $$$$\mathrm{Answer}:\:\:\:\:\sqrt{\mathrm{2}}\:\:+\:\:\mathrm{1} \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 09/Apr/19

excellent sir...

$${excellent}\:{sir}... \\ $$

Commented by Tawa1 last updated on 09/Apr/19

God bless you sir. But i have checked.  i usually undersand your  solution better sir.

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}.\:\mathrm{But}\:\mathrm{i}\:\mathrm{have}\:\mathrm{checked}.\:\:\mathrm{i}\:\mathrm{usually}\:\mathrm{undersand}\:\mathrm{your} \\ $$$$\mathrm{solution}\:\mathrm{better}\:\mathrm{sir}. \\ $$

Commented by mr W last updated on 09/Apr/19

i like this solution:  A=Σ_(k=1) ^(99) (√(10+(√k)))  B=Σ_(k=1) ^(99) (√(10−(√k)))  ((√(10+(√k)))−(√(10−(√k))))^2 =10+(√k)−2(√((10+(√k))(10−(√k))))+10−(√k)  ((√(10+(√k)))−(√(10−(√k))))^2 =2(10−(√(100−k)))  ⇒(√(10+(√k)))−(√(10−(√k)))=(√2)(√(10−(√(100−k))))  ⇒Σ_(k=1) ^(99) (√(10+(√k)))−Σ_(k=1) ^(99) (√(10−(√k)))=(√2)Σ_(k=99) ^1 (√(10−(√(100−k))))  ⇒A−B=(√2)B  ⇒A=((√2)+1)B  ⇒(A/B)=(√2)+1

$${i}\:{like}\:{this}\:{solution}: \\ $$$${A}=\underset{{k}=\mathrm{1}} {\overset{\mathrm{99}} {\sum}}\sqrt{\mathrm{10}+\sqrt{{k}}} \\ $$$${B}=\underset{{k}=\mathrm{1}} {\overset{\mathrm{99}} {\sum}}\sqrt{\mathrm{10}−\sqrt{{k}}} \\ $$$$\left(\sqrt{\mathrm{10}+\sqrt{{k}}}−\sqrt{\mathrm{10}−\sqrt{{k}}}\right)^{\mathrm{2}} =\mathrm{10}+\sqrt{{k}}−\mathrm{2}\sqrt{\left(\mathrm{10}+\sqrt{{k}}\right)\left(\mathrm{10}−\sqrt{{k}}\right)}+\mathrm{10}−\sqrt{{k}} \\ $$$$\left(\sqrt{\mathrm{10}+\sqrt{{k}}}−\sqrt{\mathrm{10}−\sqrt{{k}}}\right)^{\mathrm{2}} =\mathrm{2}\left(\mathrm{10}−\sqrt{\mathrm{100}−{k}}\right) \\ $$$$\Rightarrow\sqrt{\mathrm{10}+\sqrt{{k}}}−\sqrt{\mathrm{10}−\sqrt{{k}}}=\sqrt{\mathrm{2}}\sqrt{\mathrm{10}−\sqrt{\mathrm{100}−{k}}} \\ $$$$\Rightarrow\underset{{k}=\mathrm{1}} {\overset{\mathrm{99}} {\sum}}\sqrt{\mathrm{10}+\sqrt{{k}}}−\underset{{k}=\mathrm{1}} {\overset{\mathrm{99}} {\sum}}\sqrt{\mathrm{10}−\sqrt{{k}}}=\sqrt{\mathrm{2}}\underset{{k}=\mathrm{99}} {\overset{\mathrm{1}} {\sum}}\sqrt{\mathrm{10}−\sqrt{\mathrm{100}−{k}}} \\ $$$$\Rightarrow{A}−{B}=\sqrt{\mathrm{2}}{B} \\ $$$$\Rightarrow{A}=\left(\sqrt{\mathrm{2}}+\mathrm{1}\right){B} \\ $$$$\Rightarrow\frac{{A}}{{B}}=\sqrt{\mathrm{2}}+\mathrm{1} \\ $$

Commented by Tawa1 last updated on 09/Apr/19

God bless you sir. I appreciate.

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}.\:\mathrm{I}\:\mathrm{appreciate}. \\ $$

Commented by Tawa1 last updated on 09/Apr/19

Sir,  you said  B  =  Σ_(k = 1) ^(99)  (√(10 − (√k)))  finally how is      Σ_(k = 99) ^1 (√(10 − (√(100 − k))))    =  B    again ...

$$\mathrm{Sir},\:\:\mathrm{you}\:\mathrm{said}\:\:\mathrm{B}\:\:=\:\:\underset{\mathrm{k}\:=\:\mathrm{1}} {\overset{\mathrm{99}} {\sum}}\:\sqrt{\mathrm{10}\:−\:\sqrt{\mathrm{k}}} \\ $$$$\mathrm{finally}\:\mathrm{how}\:\mathrm{is}\:\:\:\:\:\:\underset{\mathrm{k}\:=\:\mathrm{99}} {\overset{\mathrm{1}} {\sum}}\sqrt{\mathrm{10}\:−\:\sqrt{\mathrm{100}\:−\:\mathrm{k}}}\:\:\:\:=\:\:\mathrm{B}\:\:\:\:\mathrm{again}\:... \\ $$

Commented by mr W last updated on 09/Apr/19

generally:  ((Σ_(k=m) ^(n^2 −m) (√(n+(√k))))/(Σ_(k=m) ^(n^2 −m) (√(n−(√k)))))=(√2)+1 with n,m∈N

$${generally}: \\ $$$$\frac{\underset{{k}={m}} {\overset{{n}^{\mathrm{2}} −{m}} {\sum}}\sqrt{{n}+\sqrt{{k}}}}{\underset{{k}={m}} {\overset{{n}^{\mathrm{2}} −{m}} {\sum}}\sqrt{{n}−\sqrt{{k}}}}=\sqrt{\mathrm{2}}+\mathrm{1}\:{with}\:{n},{m}\in\mathbb{N} \\ $$

Commented by Tawa1 last updated on 09/Apr/19

wow. I understand now. God bless you.

$$\mathrm{wow}.\:\mathrm{I}\:\mathrm{understand}\:\mathrm{now}.\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}. \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 09/Apr/19

look...B(when k →1→99)=Σ_(k=1) ^(99) (√(10−(√k) ))  B(k→1→99=(√(10−(√1))) +(√(10−(√2))) +(√(10−(√3))) +..+(√(10−(√(99))))   now look  B(k→99→1)[Σ_(k=99) ^1 (√(10−(√(100−k)))) ]  =(√(10−(√1))) +(√(10−(√2))) +...+(√(10−(√(99))))   hence  Σ_(k=1) ^(99) (√(10−(√k)))  =Σ_(k=99) ^1 (√(10−(√(100−k))))

$${look}...{B}\left({when}\:{k}\:\rightarrow\mathrm{1}\rightarrow\mathrm{99}\right)=\underset{{k}=\mathrm{1}} {\overset{\mathrm{99}} {\sum}}\sqrt{\mathrm{10}−\sqrt{{k}}\:} \\ $$$${B}\left({k}\rightarrow\mathrm{1}\rightarrow\mathrm{99}=\sqrt{\mathrm{10}−\sqrt{\mathrm{1}}}\:+\sqrt{\mathrm{10}−\sqrt{\mathrm{2}}}\:+\sqrt{\mathrm{10}−\sqrt{\mathrm{3}}}\:+..+\sqrt{\mathrm{10}−\sqrt{\mathrm{99}}}\:\right. \\ $$$${now}\:{look} \\ $$$${B}\left({k}\rightarrow\mathrm{99}\rightarrow\mathrm{1}\right)\left[\underset{{k}=\mathrm{99}} {\overset{\mathrm{1}} {\sum}}\sqrt{\mathrm{10}−\sqrt{\mathrm{100}−{k}}}\:\right] \\ $$$$=\sqrt{\mathrm{10}−\sqrt{\mathrm{1}}}\:+\sqrt{\mathrm{10}−\sqrt{\mathrm{2}}}\:+...+\sqrt{\mathrm{10}−\sqrt{\mathrm{99}}}\: \\ $$$${hence} \\ $$$$\underset{{k}=\mathrm{1}} {\overset{\mathrm{99}} {\sum}}\sqrt{\mathrm{10}−\sqrt{{k}}}\:\:=\underset{{k}=\mathrm{99}} {\overset{\mathrm{1}} {\sum}}\sqrt{\mathrm{10}−\sqrt{\mathrm{100}−{k}}}\: \\ $$$$ \\ $$

Commented by Meritguide1234 last updated on 10/Apr/19

see q.54226(ans already provided)

$$\mathrm{see}\:\mathrm{q}.\mathrm{54226}\left(\mathrm{ans}\:\mathrm{already}\:\mathrm{provided}\right) \\ $$

Commented by malwaan last updated on 10/Apr/19

thank you

$$\mathrm{thank}\:\mathrm{you} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com