Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 57668 by maxmathsup by imad last updated on 09/Apr/19

let V_n = ∫_0 ^(1+(1/n))     ((x+1)/(√(2x^2  +3))) dx    1) calculate lim_(n→+∞)  V_n   2) find nature of the serie Σ V_n

$${let}\:{V}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{1}+\frac{\mathrm{1}}{{n}}} \:\:\:\:\frac{{x}+\mathrm{1}}{\sqrt{\mathrm{2}{x}^{\mathrm{2}} \:+\mathrm{3}}}\:{dx}\:\: \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{lim}_{{n}\rightarrow+\infty} \:{V}_{{n}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{nature}\:{of}\:{the}\:{serie}\:\Sigma\:{V}_{{n}} \\ $$

Commented by maxmathsup by imad last updated on 10/Apr/19

1) we have V_n =∫_0 ^(1+(1/n))   (x/(√(2x^2  +3)))dx +∫_0 ^(1+(1/n))   (dx/(√(2x^2  +3)))  ∫_0 ^(1+(1/n))   (x/(√(2x^2  +3))) dx [(1/2)(√(2x^2  +3))]_0 ^(1+(1/n))  =(1/2){(√(2(1+(1/n))^2  +3))−(√3)}  ∫_0 ^(1+(1/n))   (dx/(√(2x^2  +3))) =_((√2)x =(√3)u)    ∫_0 ^(((√2)/(√3))(1+(1/n)))   (1/((√3)(√(1+u^2 )))) ((√3)/(√2)) du =(1/(√2)) ∫_0 ^(((√2)/(√3))(1+(1/n)))   (du/(√(1+u^2 )))  =[ln(u+(√(1+u^2 ))]_0 ^(((√2)/(√3))(1+(1/n)))  =ln( (√(2/3))(1+(1/n))+(√(1+(2/3)(1+(1/n))^2 ))) ⇒  V_n =(1/2){ (√(2(1+(1/n))^2 +3))−(√3)}+ln{((√2)/(√3))(1+(1/n))+(√(1+(2/3)(1+(1/n))^2 ))} ⇒  lim_(n→+∞) V_n =(1/2){(√5)−(√3)} +ln{(((√2)+(√5))/(√3))} .

$$\left.\mathrm{1}\right)\:{we}\:{have}\:{V}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}+\frac{\mathrm{1}}{{n}}} \:\:\frac{{x}}{\sqrt{\mathrm{2}{x}^{\mathrm{2}} \:+\mathrm{3}}}{dx}\:+\int_{\mathrm{0}} ^{\mathrm{1}+\frac{\mathrm{1}}{{n}}} \:\:\frac{{dx}}{\sqrt{\mathrm{2}{x}^{\mathrm{2}} \:+\mathrm{3}}} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}+\frac{\mathrm{1}}{{n}}} \:\:\frac{{x}}{\sqrt{\mathrm{2}{x}^{\mathrm{2}} \:+\mathrm{3}}}\:{dx}\:\left[\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{2}{x}^{\mathrm{2}} \:+\mathrm{3}}\right]_{\mathrm{0}} ^{\mathrm{1}+\frac{\mathrm{1}}{{n}}} \:=\frac{\mathrm{1}}{\mathrm{2}}\left\{\sqrt{\mathrm{2}\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)^{\mathrm{2}} \:+\mathrm{3}}−\sqrt{\mathrm{3}}\right\} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}+\frac{\mathrm{1}}{{n}}} \:\:\frac{{dx}}{\sqrt{\mathrm{2}{x}^{\mathrm{2}} \:+\mathrm{3}}}\:=_{\sqrt{\mathrm{2}}{x}\:=\sqrt{\mathrm{3}}{u}} \:\:\:\int_{\mathrm{0}} ^{\frac{\sqrt{\mathrm{2}}}{\sqrt{\mathrm{3}}}\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)} \:\:\frac{\mathrm{1}}{\sqrt{\mathrm{3}}\sqrt{\mathrm{1}+{u}^{\mathrm{2}} }}\:\frac{\sqrt{\mathrm{3}}}{\sqrt{\mathrm{2}}}\:{du}\:=\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\:\int_{\mathrm{0}} ^{\frac{\sqrt{\mathrm{2}}}{\sqrt{\mathrm{3}}}\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)} \:\:\frac{{du}}{\sqrt{\mathrm{1}+{u}^{\mathrm{2}} }} \\ $$$$=\left[{ln}\left({u}+\sqrt{\mathrm{1}+{u}^{\mathrm{2}} }\right]_{\mathrm{0}} ^{\frac{\sqrt{\mathrm{2}}}{\sqrt{\mathrm{3}}}\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)} \:={ln}\left(\:\sqrt{\frac{\mathrm{2}}{\mathrm{3}}}\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)+\sqrt{\mathrm{1}+\frac{\mathrm{2}}{\mathrm{3}}\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)^{\mathrm{2}} }\right)\:\Rightarrow\right. \\ $$$${V}_{{n}} =\frac{\mathrm{1}}{\mathrm{2}}\left\{\:\sqrt{\mathrm{2}\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)^{\mathrm{2}} +\mathrm{3}}−\sqrt{\mathrm{3}}\right\}+{ln}\left\{\frac{\sqrt{\mathrm{2}}}{\sqrt{\mathrm{3}}}\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)+\sqrt{\mathrm{1}+\frac{\mathrm{2}}{\mathrm{3}}\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)^{\mathrm{2}} }\right\}\:\Rightarrow \\ $$$${lim}_{{n}\rightarrow+\infty} {V}_{{n}} =\frac{\mathrm{1}}{\mathrm{2}}\left\{\sqrt{\mathrm{5}}−\sqrt{\mathrm{3}}\right\}\:+{ln}\left\{\frac{\sqrt{\mathrm{2}}+\sqrt{\mathrm{5}}}{\sqrt{\mathrm{3}}}\right\}\:. \\ $$

Commented by maxmathsup by imad last updated on 10/Apr/19

2) Σ V_n  diverges because lim V_n ≠0 .

$$\left.\mathrm{2}\right)\:\Sigma\:{V}_{{n}} \:{diverges}\:{because}\:{lim}\:{V}_{{n}} \neq\mathrm{0}\:. \\ $$

Commented by Abdo msup. last updated on 10/Apr/19

V_n =(1/2){(√(2(1+(1/n))^2 +3))−(√3)}+(1/(√2))ln{((√2)/(√3))(1+(1/n))+(√(1+(2/3)(1+(1/n))^2 ))} ⇒  lim_(n→+∞)  V_n =(1/2){ (√5)−(√3)} +(1/(√2))ln((((√2) +(√5))/(√3))) .

$${V}_{{n}} =\frac{\mathrm{1}}{\mathrm{2}}\left\{\sqrt{\mathrm{2}\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)^{\mathrm{2}} +\mathrm{3}}−\sqrt{\mathrm{3}}\right\}+\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}{ln}\left\{\frac{\sqrt{\mathrm{2}}}{\sqrt{\mathrm{3}}}\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)+\sqrt{\mathrm{1}+\frac{\mathrm{2}}{\mathrm{3}}\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)^{\mathrm{2}} }\right\}\:\Rightarrow \\ $$$${lim}_{{n}\rightarrow+\infty} \:{V}_{{n}} =\frac{\mathrm{1}}{\mathrm{2}}\left\{\:\sqrt{\mathrm{5}}−\sqrt{\mathrm{3}}\right\}\:+\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}{ln}\left(\frac{\sqrt{\mathrm{2}}\:+\sqrt{\mathrm{5}}}{\sqrt{\mathrm{3}}}\right)\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com