Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 57746 by maxmathsup by imad last updated on 10/Apr/19

let f(x)=∫_(−∞) ^(+∞)     (dt/((t^2 −2xt +1)^2 ))  with ∣x∣<1   (x real)  1) determine a explicit form  for f(x)  2) find also g(x) =∫_(−∞) ^(+∞)    ((tdt)/((t^2 −2xt +1)^3 ))  3) calculate ∫_(−∞) ^(+∞)    (dt/((t^2 −(√2)t +1)^2 ))   and ∫_(−∞) ^(+∞)   ((tdt)/((t^2 −(√2)t +1)^3 ))  4) calculate A(θ) =∫_(−∞) ^(+∞)    (dt/((t^2  −2cosθ t+1)^2 ))   and   B(θ) =∫_(−∞) ^(+∞)     ((tdt)/((t^2  −2cosθ t +1)^3 ))    with 0<θ <(π/2)     .

letf(x)=+dt(t22xt+1)2withx∣<1(xreal) 1)determineaexplicitformforf(x) 2)findalsog(x)=+tdt(t22xt+1)3 3)calculate+dt(t22t+1)2and+tdt(t22t+1)3 4)calculateA(θ)=+dt(t22cosθt+1)2and B(θ)=+tdt(t22cosθt+1)3with0<θ<π2.

Commented bymaxmathsup by imad last updated on 13/Apr/19

1) let consider the complex function ϕ(z) =(1/((z^2 −2xz +1)^2 ))  let determine the poles of ϕ   z^2 −2xz +1 =0   Δ^′  =x^2 −1 =(i(√(1−x^2 )))^2  ⇒z_1 =x+i(√(1−x^2 )) and z_2 =x−i(√(1−x^2 ))  ϕ(z) =(1/((z−z_1 )^2 (z−z_2 )^2 ))  the poles of ϕ are z_1  and z_2  (doubles)  residus theorem give ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,z_1 )  Res(ϕ,z_1 ) =lim_(z→z_1  )     (1/((2−1)!)){(z−z_1 )^2  ϕ(z)}^((1))   =lim_(z→z_1 )    {(1/((z−z_2 )^2 ))}^((1))  =lim_(z→z_1 )    ((−2(z−z_2 ))/((z−z_2 )^4 )) =lim_(z→z_2 )     ((−2)/((z−z_2 )^3 ))  =((−2)/((z_1 −z_2 )^3 )) =((−2)/((2i(√(1−x^2 )))^3 )) =((−2)/(−8i(1−x^2 )(√(1−x^2 )))) =(1/(4i(1−x^2 )(√(1−x^2 )))) ⇒  f(x) =∫_(−∞) ^(+∞)  ϕ(z)dz = 2iπ (1/(4i(1−x^2 )(√(1−x^2 )))) ⇒f(x) =(π/(2(1−x^2 )(√(1−x^2 ))))  with ∣x∣<1 .

1)letconsiderthecomplexfunctionφ(z)=1(z22xz+1)2 letdeterminethepolesofφz22xz+1=0 Δ=x21=(i1x2)2z1=x+i1x2andz2=xi1x2 φ(z)=1(zz1)2(zz2)2thepolesofφarez1andz2(doubles) residustheoremgive+φ(z)dz=2iπRes(φ,z1) Res(φ,z1)=limzz11(21)!{(zz1)2φ(z)}(1) =limzz1{1(zz2)2}(1)=limzz12(zz2)(zz2)4=limzz22(zz2)3 =2(z1z2)3=2(2i1x2)3=28i(1x2)1x2=14i(1x2)1x2 f(x)=+φ(z)dz=2iπ14i(1x2)1x2f(x)=π2(1x2)1x2 withx∣<1.

Commented bymaxmathsup by imad last updated on 13/Apr/19

2) we have f^′ (x) =∫_(−∞) ^(+∞)   (∂/∂x)((1/((t^2 −2xt +1)^2 )))dt  =∫_(−∞) ^(+∞)    ((2t(t^2 −2xt +1))/((t^2 −2xt +1)^4 )) dt = 2 ∫_(−∞) ^(+∞)   ((t dt)/((t^2 −2xt +1)^3 )) =2g(x) ⇒g(x)=(1/2)f^′ (x)   we have f(x) =(π/(2(1−x^2 )(√(1−x^2 )))) ⇒f(x) =(π/2){(1−x^2 )^(−1) (1−x^2 )^(−(1/2)) } ⇒  f^′ (x) =(π/2){2x (1−x^2 )^(−2) (1−x^2 )^(−(1/2))   +x(1−x^2 )^(−(3/2)) (1−x^2 )^(−1) }  =(π/2){  ((2x)/((1−x^2 )^2 (√(1−x^2 )))) +(x/((1−x^2 )(1−x^2 )(√(1−x^2 ))))}  =((πx)/2){  (2/((1−x^2 )^2 (√(1−x^2 )))) +(x/((1−x^2 )^2 (√(1−x^2 ))))}  =((πx(x+2))/(2(1−x^2 )^2 (√(1−x^2 )))) ⇒g(x) =((πx(x+2))/(4(1−x^2 )^2 (√(1−x^2 )))) .

2)wehavef(x)=+x(1(t22xt+1)2)dt =+2t(t22xt+1)(t22xt+1)4dt=2+tdt(t22xt+1)3=2g(x)g(x)=12f(x) wehavef(x)=π2(1x2)1x2f(x)=π2{(1x2)1(1x2)12} f(x)=π2{2x(1x2)2(1x2)12+x(1x2)32(1x2)1} =π2{2x(1x2)21x2+x(1x2)(1x2)1x2} =πx2{2(1x2)21x2+x(1x2)21x2} =πx(x+2)2(1x2)21x2g(x)=πx(x+2)4(1x2)21x2.

Commented bymaxmathsup by imad last updated on 13/Apr/19

3) ∫_(−∞) ^(+∞)   (dt/((t^2 −(√2)t +1)^2 )) =f(((√2)/2)) = (π/(2(1−(((√2)/2))^2 (√(1−(((√2)/2))^2 ))))  =(π/(2(1−(1/2))(√(1−(1/2))))) =(π/(√(1/2))) =π(√2)  ∫_(−∞) ^(+∞)    ((tdt)/((t^2  −(√2)t +1)^3 )) =g(((√2)/2)) =((π((√2)/2)(((√2)/2) +2))/(4(1−(((√2)/2))^2 )^2 (√(1−(((√2)/2))^2 ))))  =((π(√2)(4+(√2)))/(16(1−(1/2))^2 (√(1−(1/2))))) =((π(√2)(4+(√2)))/(4.(1/(√2)))) =((2π(4+(√2)))/4) =(π/2)(4+(√2)) .

3)+dt(t22t+1)2=f(22)=π2(1(22)21(22)2 =π2(112)112=π12=π2 +tdt(t22t+1)3=g(22)=π22(22+2)4(1(22)2)21(22)2 =π2(4+2)16(112)2112=π2(4+2)4.12=2π(4+2)4=π2(4+2).

Commented bymaxmathsup by imad last updated on 13/Apr/19

4) we have A(θ) =∫_(−∞) ^(+∞)    (dt/((t^2  −2cosθ t +1)^2 )) =f(cosθ)=(π/(2(1−cos^2 θ)(√(1−cos^2 θ))))  =(π/(2sin^2 θ sinθ)) =(π/(2sin^3 θ))  (     0<θ<(π/2))  also we have B(θ) =∫_(−∞) ^(+∞)    ((tdt)/((t^2 −2cosθ t +1)^3 )) ⇒B(θ) =g(cosθ)  =((π cosθ(cosθ +2))/(4(1−cos^2 θ)^2 (√(1−cos^2 θ)))) =((π cosθ(2+cosθ))/(4sin^4 θ sinθ)) =((2π cosθ +π cos^2 θ)/(4 sin^5 θ)) .

4)wehaveA(θ)=+dt(t22cosθt+1)2=f(cosθ)=π2(1cos2θ)1cos2θ =π2sin2θsinθ=π2sin3θ(0<θ<π2) alsowehaveB(θ)=+tdt(t22cosθt+1)3B(θ)=g(cosθ) =πcosθ(cosθ+2)4(1cos2θ)21cos2θ=πcosθ(2+cosθ)4sin4θsinθ=2πcosθ+πcos2θ4sin5θ.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com