Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 57819 by behi83417@gmail.com last updated on 12/Apr/19

a.  ∫   [((1−e^x )/(1+e^x ))]^(1/2)  dx=?  b.     ∫  ((lnx)/(√(1+x)))=?  c.       ∫_( (√e)) ^(     e)   sin(lnx)dx=?

a.[1ex1+ex]12dx=?b.lnx1+x=?c.eesin(lnx)dx=?

Commented by Abdo msup. last updated on 13/Apr/19

b) let I =∫ ((ln(x))/(√(1+x))) dx  by parts u^′ =(1/(√(1+x))) and v=ln(x)  ⇒I =2(√(1+x))ln(x)−∫((2(√(1+x)))/x) dx  =2ln(x)(√(1+x)) −2 ∫  ((√(1+x))/x) dx  but  ∫  ((√(1+x))/x) dx =_((√(1+x))=t)    ∫  (t/(t^2 −1))(2t)dt  =2 ∫  (t^2 /(t^2 −1)) dt =2 ∫  ((t^2 −1+1)/(t^2 −1)) dt  =2t +2 ∫  (dt/(t^2 −1)) =2t +∫ ((1/(t−1)) −(1/(t+1)))dt  =2t +ln∣((t−1)/(t+1))∣ +c  =2(√(1+x))+ln∣(((√(1+x))−1)/((√(1+x))+1))∣ +c ⇒  I =2(√(1+x))ln(x)−4(√(1+x))−2ln∣(((√(1+x))−1)/((√(1+x)) +1)) ∣ +c .

b)letI=ln(x)1+xdxbypartsu=11+xandv=ln(x)I=21+xln(x)21+xxdx=2ln(x)1+x21+xxdxbut1+xxdx=1+x=ttt21(2t)dt=2t2t21dt=2t21+1t21dt=2t+2dtt21=2t+(1t11t+1)dt=2t+lnt1t+1+c=21+x+ln1+x11+x+1+cI=21+xln(x)41+x2ln1+x11+x+1+c.

Commented by behi83417@gmail.com last updated on 13/Apr/19

thank you very much proph. Abdo.

thankyouverymuchproph.Abdo.

Commented by Abdo msup. last updated on 13/Apr/19

you are welcome .

youarewelcome.

Commented by Abdo msup. last updated on 13/Apr/19

let I =∫(√((1−e^x )/(1+e^x )))dx  changement e^x =t give  I =∫ (√((1−t)/(1+t)))(dt/t)  now we use ch.(√((1−t)/(1+t)))=u ⇒  ((1−t)/(1+t)) =u^2  ⇒1−t =u^2  +u^2 t ⇒1−u^2 =(1+u^2 )t ⇒  t =((1−u^2 )/(1+u^2 )) ⇒dt =((−2u(1+u^2 )−2u(1−u^2 ))/((1+u^2 )^2 ))  =((−4u)/((1+u^2 )^2 ))du ⇒I =∫  u ((1+u^2 )/(1−u^2 )) ((−4u)/((1+u^2 )^2 )) du  =−4 ∫  (u^2 /((1−u^2 )(1+u^2 ))) du  =−2 ∫u^2 {  (1/(1−u^2 )) −(1/(1+u^2 ))}du  =2 ∫   (u^2 /(u^2 −1)) du  +2∫  (u^2 /(1+u^2 ))du  =2∫ ((u^2 −1+1)/(u^2 −1)) du +2 ∫((1+u^2 −1)/(1+u^2 )) du  =2u +∫  (2/(u^2 −1)) du +2u −2 ∫  (du/(1+u^2 ))  =4u +∫ ((1/(u−1)) −(1/(u+1)))du −2 ∫ (du/(1+u^2 ))  =4u +ln∣((u−1)/(u+1))∣−2arctan(u)+c  =4(√((1−t)/(1+t))) +ln∣(((√((1−t)/(1+t)))−1)/((√((1−t)/(1+t)))+1))∣−2arctan((√((1−t)/(1+t))))+c  I=4(√((1−e^x )/(1+e^x ))) +ln∣(((√((1−e^x )/(1+e^x )))−1)/((√((1−e^x )/(1+e^x )))+1))∣−2arctan((√((1−e^x )/(1+e^x ))))+c

letI=1ex1+exdxchangementex=tgiveI=1t1+tdttnowweusech.1t1+t=u1t1+t=u21t=u2+u2t1u2=(1+u2)tt=1u21+u2dt=2u(1+u2)2u(1u2)(1+u2)2=4u(1+u2)2duI=u1+u21u24u(1+u2)2du=4u2(1u2)(1+u2)du=2u2{11u211+u2}du=2u2u21du+2u21+u2du=2u21+1u21du+21+u211+u2du=2u+2u21du+2u2du1+u2=4u+(1u11u+1)du2du1+u2=4u+lnu1u+12arctan(u)+c=41t1+t+ln1t1+t11t1+t+12arctan(1t1+t)+cI=41ex1+ex+ln1ex1+ex11ex1+ex+12arctan(1ex1+ex)+c

Commented by behi83417@gmail.com last updated on 13/Apr/19

thanks in advamce dear proph. Abdo.

thanksinadvamcedearproph.Abdo.

Commented by peter frank last updated on 13/Apr/19

nice work

nicework

Commented by maxmathsup by imad last updated on 19/Apr/19

you are welcome

youarewelcome

Answered by tanmay.chaudhury50@gmail.com last updated on 13/Apr/19

c)∫_(√e) ^e  sin(lnx)dx  t=lnx→x=e^t         dx=e^t dt  ∫_(1/2) ^1  sint×e^t dt  now use formula   ∫e^(ax) sinbxdx=((e^(ax) (asinbx−bcosbx))/(a^2 +b^2 ))  ∣((e^t (sint−cost))/(1^2 +1^2 ))∣_(1/2) ^1   (1/2){e(sin1−cos1)−(√e) (sin(1/2)−cos(1/2))}

c)eesin(lnx)dxt=lnxx=etdx=etdt121sint×etdtnowuseformulaeaxsinbxdx=eax(asinbxbcosbx)a2+b2et(sintcost)12+1212112{e(sin1cos1)e(sin12cos12)}

Commented by behi83417@gmail.com last updated on 13/Apr/19

thank you so much sir tanmay.

thankyousomuchsirtanmay.

Commented by tanmay.chaudhury50@gmail.com last updated on 13/Apr/19

most selcome...pls check answer of a)

mostselcome...plscheckanswerofa)

Answered by tanmay.chaudhury50@gmail.com last updated on 13/Apr/19

a)∫((1−e^x )/(√(1−e^(2x) )))dx  ∫(dx/(√(1−e^(2x) )))−∫((e^x dx)/(√(1−e^(2x) )))  ∫((e^(−x) dx)/(√(e^(−2x) −1)))−∫((e^x dx)/(√(1−e^(2x) )))  =(−1)∫((d(e^(−x) ))/(√((e^(−x) )^2 −1)))−∫((d(e^x ))/(√(1−(e^x )^2 )))  now use formula  ∫(dx/(√(x^2 −a^2 )))=ln(x+(√(x^2 −a^2 )) )  ∫(dx/(√(a^2 −x^2 )))=sin^(−1) ((x/a))  =(−1)ln(e^(−x) +(√(e^(−2x) −1)) )−sin^(−1) ((e^x /1))+c

a)1ex1e2xdxdx1e2xexdx1e2xexdxe2x1exdx1e2x=(1)d(ex)(ex)21d(ex)1(ex)2nowuseformuladxx2a2=ln(x+x2a2)dxa2x2=sin1(xa)=(1)ln(ex+e2x1)sin1(ex1)+c

Commented by behi83417@gmail.com last updated on 13/Apr/19

your answer is right sir tanmay.  thanks in advance.

youranswerisrightsirtanmay.thanksinadvance.

Commented by tanmay.chaudhury50@gmail.com last updated on 13/Apr/19

most welcome sir

mostwelcomesir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com