Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 57902 by maxmathsup by imad last updated on 14/Apr/19

prove that the equation Z^n =1  have exacly n roots  given by  Z_k =e^(i((2kπ)/n))     k∈[[0,n−1]]

$${prove}\:{that}\:{the}\:{equation}\:{Z}^{{n}} =\mathrm{1}\:\:{have}\:{exacly}\:{n}\:{roots}\:\:{given}\:{by} \\ $$$${Z}_{{k}} ={e}^{{i}\frac{\mathrm{2}{k}\pi}{{n}}} \:\:\:\:{k}\in\left[\left[\mathrm{0},{n}−\mathrm{1}\right]\right] \\ $$

Commented by Abdo msup. last updated on 14/Apr/19

let put Z =r e^(iθ)    so Z^n  =1 ⇔r^n  e^(inθ)  =e^(i2kπ)      (k∈Z) ⇒  r^n =1  and nθ =2kπ ⇒r =1 and θ =((2kπ)/n)  so the roots of this equation are Z_k =e^((i2kπ)/n)   k ∈ Z    due to Z_(−k) =Z_k ^−    we can take k≥0  if k≤n−1 there is exacly n roots and k∈[[0,n−1]]  if k>n  let divide k by n ⇒∃(q,r) from N /  k =qn +r and 0≤r≤n−1 ⇒  Z_k =e^(i((2(qn +r)π)/n))  =e^(i2qπ)  e^((i2rπ)/n)  =e^((i2rπ)/n)  =Z_r   so there is exatly nroots  Z_k  given by  Z_k =e^((i2kπ)/n)    and k∈[[0,n−1⌉].

$${let}\:{put}\:{Z}\:={r}\:{e}^{{i}\theta} \:\:\:{so}\:{Z}^{{n}} \:=\mathrm{1}\:\Leftrightarrow{r}^{{n}} \:{e}^{{in}\theta} \:={e}^{{i}\mathrm{2}{k}\pi} \:\:\:\:\:\left({k}\in{Z}\right)\:\Rightarrow \\ $$$${r}^{{n}} =\mathrm{1}\:\:{and}\:{n}\theta\:=\mathrm{2}{k}\pi\:\Rightarrow{r}\:=\mathrm{1}\:{and}\:\theta\:=\frac{\mathrm{2}{k}\pi}{{n}} \\ $$$${so}\:{the}\:{roots}\:{of}\:{this}\:{equation}\:{are}\:{Z}_{{k}} ={e}^{\frac{{i}\mathrm{2}{k}\pi}{{n}}} \\ $$$${k}\:\in\:{Z}\:\:\:\:{due}\:{to}\:{Z}_{−{k}} =\overset{−} {{Z}}_{{k}} \:\:\:{we}\:{can}\:{take}\:{k}\geqslant\mathrm{0} \\ $$$${if}\:{k}\leqslant{n}−\mathrm{1}\:{there}\:{is}\:{exacly}\:{n}\:{roots}\:{and}\:{k}\in\left[\left[\mathrm{0},{n}−\mathrm{1}\right]\right] \\ $$$${if}\:{k}>{n}\:\:{let}\:{divide}\:{k}\:{by}\:{n}\:\Rightarrow\exists\left({q},{r}\right)\:{from}\:{N}\:/ \\ $$$${k}\:={qn}\:+{r}\:{and}\:\mathrm{0}\leqslant{r}\leqslant{n}−\mathrm{1}\:\Rightarrow \\ $$$${Z}_{{k}} ={e}^{{i}\frac{\mathrm{2}\left({qn}\:+{r}\right)\pi}{{n}}} \:={e}^{{i}\mathrm{2}{q}\pi} \:{e}^{\frac{{i}\mathrm{2}{r}\pi}{{n}}} \:={e}^{\frac{{i}\mathrm{2}{r}\pi}{{n}}} \:={Z}_{{r}} \\ $$$${so}\:{there}\:{is}\:{exatly}\:{nroots}\:\:{Z}_{{k}} \:{given}\:{by} \\ $$$${Z}_{{k}} ={e}^{\frac{{i}\mathrm{2}{k}\pi}{{n}}} \:\:\:{and}\:{k}\in\left[\left[\mathrm{0},{n}−\mathrm{1}\rceil\right].\right. \\ $$

Answered by mr W last updated on 14/Apr/19

let Z=1(cos θ+i sin θ)=e^(θi)   Z^n =cos nθ+i sin nθ=1  ⇒cos nθ=1, sin nθ=0  ⇒nθ=2kπ  ⇒θ=((2kπ)/n) with 0≤(k/n)<1 or 0≤k≤n−1  ⇒Z=e^(i((2kπ)/n))  with 0≤k≤n−1

$${let}\:{Z}=\mathrm{1}\left(\mathrm{cos}\:\theta+{i}\:\mathrm{sin}\:\theta\right)={e}^{\theta{i}} \\ $$$${Z}^{{n}} =\mathrm{cos}\:{n}\theta+{i}\:\mathrm{sin}\:{n}\theta=\mathrm{1} \\ $$$$\Rightarrow\mathrm{cos}\:{n}\theta=\mathrm{1},\:\mathrm{sin}\:{n}\theta=\mathrm{0} \\ $$$$\Rightarrow{n}\theta=\mathrm{2}{k}\pi \\ $$$$\Rightarrow\theta=\frac{\mathrm{2}{k}\pi}{{n}}\:{with}\:\mathrm{0}\leqslant\frac{{k}}{{n}}<\mathrm{1}\:{or}\:\mathrm{0}\leqslant{k}\leqslant{n}−\mathrm{1} \\ $$$$\Rightarrow{Z}={e}^{{i}\frac{\mathrm{2}{k}\pi}{{n}}} \:{with}\:\mathrm{0}\leqslant{k}\leqslant{n}−\mathrm{1} \\ $$

Commented by mr W last updated on 14/Apr/19

0≤θ<2π  there are exactly n values for θ in  this range, i.e. there are exactly n  roots.

$$\mathrm{0}\leqslant\theta<\mathrm{2}\pi \\ $$$${there}\:{are}\:{exactly}\:{n}\:{values}\:{for}\:\theta\:{in} \\ $$$${this}\:{range},\:{i}.{e}.\:{there}\:{are}\:{exactly}\:{n} \\ $$$${roots}. \\ $$

Commented by maxmathsup by imad last updated on 14/Apr/19

yes sir but  what there is only n roots...

$${yes}\:{sir}\:{but}\:\:{what}\:{there}\:{is}\:{only}\:{n}\:{roots}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com