Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 58016 by rahul 19 last updated on 16/Apr/19

Value of lim_(x→0) ((cosh x−cos x)/(xsin x)) =?

$${Value}\:{of}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{cosh}\:{x}−\mathrm{cos}\:{x}}{{x}\mathrm{sin}\:{x}}\:=? \\ $$

Commented by rahul 19 last updated on 16/Apr/19

 by L−H rule , i′m getting 0.  kindly check...

$$\:{by}\:{L}−{H}\:{rule}\:,\:{i}'{m}\:{getting}\:\mathrm{0}. \\ $$$${kindly}\:{check}... \\ $$

Answered by mr W last updated on 16/Apr/19

lim_(x→0) ((sinh x+sin x)/(sin x+x cos x))=((lim_(x→0) ((sinh x)/(sin x))+1)/(1+lim_(x→0) (x/(sin x))×cos x))=((1+1)/(1+1))=1

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sinh}\:{x}+\mathrm{sin}\:{x}}{\mathrm{sin}\:{x}+{x}\:\mathrm{cos}\:{x}}=\frac{\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sinh}\:{x}}{\mathrm{sin}\:{x}}+\mathrm{1}}{\mathrm{1}+\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{x}}{\mathrm{sin}\:{x}}×\mathrm{cos}\:{x}}=\frac{\mathrm{1}+\mathrm{1}}{\mathrm{1}+\mathrm{1}}=\mathrm{1} \\ $$

Commented by rahul 19 last updated on 16/Apr/19

thanks sir.

$${thanks}\:{sir}. \\ $$

Answered by tanmay last updated on 16/Apr/19

lim_(x→0)  ((((e^x +e^(−x) )/2)−cosx)/(xsinx))  (1/2)lim_(x→0)  ((e^x +e^(−x) −2cosx)/(xsinx))  (1/2)lim_(x→0)  (((1+x+(x^2 /(2!))+(x^3 /(3!))+...)+(1−x+(x^2 /(2!))−(x^3 /(3!))+..)−2(1−(x^2 /(2!))+(x^4 /(4!))−..))/(x(x−(x^3 /(3!))+(x^5 /(5!))−...)))  (1/2)lim_(x→0)  (((2+((2x^2 )/(2!))+((2x^4 )/(4!))+...)−(2−((2x^2 )/(2!))+((2x^4 )/(4!))+...))/(x^2 (1−(x^2 /(3!))+(x^4 /(5!))+..)))  (1/2)lim_(x→0)  ((2x^2 +((2x^6 )/(6!))+...)/(x^2 (1−(x^2 /(3!))+(x^4 /(5!)))))  =(1/2)×((2+0)/((1−0)))=1  or method  or (1/2)lim_(x→0)  ((e^x +e^(−x) −2cosx)/(xsinx))((0/0))  =(1/2)lim_(x→0)  ((e^x −e^(−x) +2sinx)/(xcosx+sinx))  =(1/2)lim_(x→0) (((e^x −1)−(e^(−x) −1)+2sinx)/(xcosx+sinx))  (1/2)lim_(x→0) ((((e^x −1)/x)+((e^(−x) −1)/(−x))+2((sinx)/x))/(cosx+((sinx)/x)))  (1/2)×((1+1+2×1)/(1+1))  (1/2)×((4/2))=1              (1/2)lim_(x→0)

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\frac{{e}^{{x}} +{e}^{−{x}} }{\mathrm{2}}−{cosx}}{{xsinx}} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{e}^{{x}} +{e}^{−{x}} −\mathrm{2}{cosx}}{{xsinx}} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left(\mathrm{1}+{x}+\frac{{x}^{\mathrm{2}} }{\mathrm{2}!}+\frac{{x}^{\mathrm{3}} }{\mathrm{3}!}+...\right)+\left(\mathrm{1}−{x}+\frac{{x}^{\mathrm{2}} }{\mathrm{2}!}−\frac{{x}^{\mathrm{3}} }{\mathrm{3}!}+..\right)−\mathrm{2}\left(\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}!}+\frac{{x}^{\mathrm{4}} }{\mathrm{4}!}−..\right)}{{x}\left({x}−\frac{{x}^{\mathrm{3}} }{\mathrm{3}!}+\frac{{x}^{\mathrm{5}} }{\mathrm{5}!}−...\right)} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left(\mathrm{2}+\frac{\mathrm{2}{x}^{\mathrm{2}} }{\mathrm{2}!}+\frac{\mathrm{2}{x}^{\mathrm{4}} }{\mathrm{4}!}+...\right)−\left(\mathrm{2}−\frac{\mathrm{2}{x}^{\mathrm{2}} }{\mathrm{2}!}+\frac{\mathrm{2}{x}^{\mathrm{4}} }{\mathrm{4}!}+...\right)}{{x}^{\mathrm{2}} \left(\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{3}!}+\frac{{x}^{\mathrm{4}} }{\mathrm{5}!}+..\right)} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{2}{x}^{\mathrm{2}} +\frac{\mathrm{2}{x}^{\mathrm{6}} }{\mathrm{6}!}+...}{{x}^{\mathrm{2}} \left(\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{3}!}+\frac{{x}^{\mathrm{4}} }{\mathrm{5}!}\right)} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}×\frac{\mathrm{2}+\mathrm{0}}{\left(\mathrm{1}−\mathrm{0}\right)}=\mathrm{1} \\ $$$${or}\:{method} \\ $$$${or}\:\frac{\mathrm{1}}{\mathrm{2}}\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{e}^{{x}} +{e}^{−{x}} −\mathrm{2}{cosx}}{{xsinx}}\left(\frac{\mathrm{0}}{\mathrm{0}}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{e}^{{x}} −{e}^{−{x}} +\mathrm{2}{sinx}}{{xcosx}+{sinx}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\left({e}^{{x}} −\mathrm{1}\right)−\left({e}^{−{x}} −\mathrm{1}\right)+\mathrm{2}{sinx}}{{xcosx}+{sinx}} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\frac{{e}^{{x}} −\mathrm{1}}{{x}}+\frac{{e}^{−{x}} −\mathrm{1}}{−{x}}+\mathrm{2}\frac{{sinx}}{{x}}}{{cosx}+\frac{{sinx}}{{x}}} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}×\frac{\mathrm{1}+\mathrm{1}+\mathrm{2}×\mathrm{1}}{\mathrm{1}+\mathrm{1}} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}×\left(\frac{\mathrm{4}}{\mathrm{2}}\right)=\mathrm{1} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}} \\ $$

Commented by rahul 19 last updated on 16/Apr/19

Thank U sir.

$${Thank}\:{U}\:{sir}. \\ $$

Commented by tanmay last updated on 16/Apr/19

most welcome

$${most}\:{welcome}\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com