Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 58025 by Kunal12588 last updated on 16/Apr/19

Trace the changes in the sign and magnitude  of  ((sin 3θ)/(cos 2θ)) as the angle increases from 0 to (π/2).  also find its minimum and maximum values.

Tracethechangesinthesignandmagnitudeofsin3θcos2θastheangleincreasesfrom0toπ2.alsofinditsminimumandmaximumvalues.

Commented by Kunal12588 last updated on 16/Apr/19

Answered by tanmay last updated on 16/Apr/19

(π/2)≥θ≥0  π≥2θ≥0  ((3π)/2)≥3θ≥0       A)    sin3θ=+ve   (π/6)≥θ≥0              cos2θ=+ve           so   ((sin3θ)/(cos2θ))=+ve  when (π/6)≥θ≥0  B)   sin3θ=+ve      [when (π/4)> θ≥(π/6)              cos2θ=+ve           ((sin3θ)/(cos2θ))=++ve  c)sin3θ=     +ve    when  (π/3)≥θ>(π/4)         cos2θ=−ve       ((sin3θ)/(cos2θ))=−ve  d)sin3θ=  −ve     (π/2)≥θ≥(π/3)       cos2θ=−ve  so ((sin3θ)/(cos2θ))=+ve  pls check...    f(θ)=((sin3θ)/(cos2θ))  (df/dθ)=((cos2θ×3cos3θ+2sin3θ×sin2θ)/(cos^2 2θ))  (df/dθ)=((cos2θ×cos3θ+2cos(3θ−2θ))/(cos^2 2θ))  (df/dθ)=((cos3θ×cos2θ+2cosθ)/(cos^2 2θ))  for max/min (df/dθ)=0  cos3θ×cos2θ+2cosθ  (4x^3 −3x)(2x^2 −1)+2x  8x^5 −4x^3 −6x^3 +3x+2x  8x^5 −10x^3 +5x  x(8x^4 −10x^2 +5)  x{2(4x^4 −5x^2 )+5}  x[2{(2x^2 )^2 −2×2x^2 ×(5/4)+((25)/(16))−((25)/(16))}+5]  x[2(2x^2 −(5/4))^2 −((25)/8)+5]  x[2(2x^2 −(5/4))^2 +((15)/8)]  so [2(2x^2 −(5/4))^2 +((15)/8)]≠0  hence 8x^5 −10x^3 +5x=0 when x=0  cosθ=0=cos(π/2)  [θ=(π/2)]  f((π/2))=((sin(((3π)/2)))/(cos(((2π)/2))))=((−1)/(−1))=1(maximum value)  f(0)=((sin(3×0))/(cos(2×0)))=0

π2θ0π2θ03π23θ0A)sin3θ=+veπ6θ0cos2θ=+vesosin3θcos2θ=+vewhenπ6θ0B)sin3θ=+ve[whenπ4>θπ6cos2θ=+vesin3θcos2θ=++vec)sin3θ=+vewhenπ3θ>π4cos2θ=vesin3θcos2θ=ved)sin3θ=veπ2θπ3cos2θ=vesosin3θcos2θ=+veplscheck...f(θ)=sin3θcos2θdfdθ=cos2θ×3cos3θ+2sin3θ×sin2θcos22θdfdθ=cos2θ×cos3θ+2cos(3θ2θ)cos22θdfdθ=cos3θ×cos2θ+2cosθcos22θformax/mindfdθ=0cos3θ×cos2θ+2cosθ(4x33x)(2x21)+2x8x54x36x3+3x+2x8x510x3+5xx(8x410x2+5)x{2(4x45x2)+5}x[2{(2x2)22×2x2×54+25162516}+5]x[2(2x254)2258+5]x[2(2x254)2+158]so[2(2x254)2+158]0hence8x510x3+5x=0whenx=0cosθ=0=cosπ2[θ=π2]f(π2)=sin(3π2)cos(2π2)=11=1(maximumvalue)f(0)=sin(3×0)cos(2×0)=0

Commented by Kunal12588 last updated on 17/Apr/19

thank you sir

thankyousir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com