All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 58067 by mustakim420 last updated on 17/Apr/19
Commented by maxmathsup by imad last updated on 17/Apr/19
letA(x)=x(1+1x)x−e⇒A(x)=e{(1+1x)x−e}ln(x)⇒ln(A(x))={(1+1x)x−e)}ln(x)but(1+1x)x−e=exln(1+1x)−e=x=1te1tln(1+t)−ex→∞⇒t→0+wehaveln(1+t)}(1)=11+t=1−t+o(t2)⇒ln(1+t)=t−t22+o(t3)⇒ln(1+t)t=1−t2+o(t2)⇒eln(1+t)t=e1−t2+o(t2)=e(1−t2+o(t2))⇒(1+1x)x−e=−e2x+o(1x2)⇒ln(A(x))=(−e2x+o(1x2)}ln(x)⇒limx→+∞ln(A(x))=0⇒limx→∞A(x)=1.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com