Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 58132 by ajfour last updated on 18/Apr/19

Commented by ajfour last updated on 18/Apr/19

Find coordinates of P and Q, in terms  of a,b,c, and R.

$$\mathrm{Find}\:\mathrm{coordinates}\:\mathrm{of}\:\mathrm{P}\:\mathrm{and}\:\mathrm{Q},\:\mathrm{in}\:\mathrm{terms} \\ $$$$\mathrm{of}\:\mathrm{a},\mathrm{b},\mathrm{c},\:\mathrm{and}\:\mathrm{R}. \\ $$

Answered by tanmay last updated on 18/Apr/19

  parabola y=αx^2 +βx+γ  0=αa^2 +βa+γ  0=αb^2 +β(−b)+γ  −c=α×0^2 +β×0^2 +γ    [ γ=−c]  y=αx^2 +βx−c  αa^2 +βa=αb^2 −βb  α(a+b)(a−b)+β(a+b)=0  α(a−b)+β=0  β=α(b−a)  0=αa^2 +βa+γ  0=αa^2 +αa(b−a)−c  c=α(a^2 +ab−a^2 )  α=(c/(ab))   β=(c/(ab))(b−a)  parabola eqn  y=((c/(ab)))x^2 +(c/(ab))(b−a)x−c←chek it  again  R+c=a+b  radius ofcircle=a+b−c  eqn of circle x^2 +y^2 =(a+b−c)^2 ←check it  pls check eqn of circle and parabola...  if correct...then to solve to find P and Q

$$ \\ $$$${parabola}\:{y}=\alpha{x}^{\mathrm{2}} +\beta{x}+\gamma \\ $$$$\mathrm{0}=\alpha{a}^{\mathrm{2}} +\beta{a}+\gamma \\ $$$$\mathrm{0}=\alpha{b}^{\mathrm{2}} +\beta\left(−{b}\right)+\gamma \\ $$$$−{c}=\alpha×\mathrm{0}^{\mathrm{2}} +\beta×\mathrm{0}^{\mathrm{2}} +\gamma\:\:\:\:\left[\:\gamma=−{c}\right] \\ $$$${y}=\alpha{x}^{\mathrm{2}} +\beta{x}−{c} \\ $$$$\alpha{a}^{\mathrm{2}} +\beta{a}=\alpha{b}^{\mathrm{2}} −\beta{b} \\ $$$$\alpha\left({a}+{b}\right)\left({a}−{b}\right)+\beta\left({a}+{b}\right)=\mathrm{0} \\ $$$$\alpha\left({a}−{b}\right)+\beta=\mathrm{0} \\ $$$$\beta=\alpha\left({b}−{a}\right) \\ $$$$\mathrm{0}=\alpha{a}^{\mathrm{2}} +\beta{a}+\gamma \\ $$$$\mathrm{0}=\alpha{a}^{\mathrm{2}} +\alpha{a}\left({b}−{a}\right)−{c} \\ $$$${c}=\alpha\left({a}^{\mathrm{2}} +{ab}−{a}^{\mathrm{2}} \right) \\ $$$$\alpha=\frac{{c}}{{ab}}\:\:\:\beta=\frac{{c}}{{ab}}\left({b}−{a}\right) \\ $$$${parabola}\:{eqn}\:\:{y}=\left(\frac{{c}}{{ab}}\right){x}^{\mathrm{2}} +\frac{{c}}{{ab}}\left({b}−{a}\right){x}−{c}\leftarrow{chek}\:{it} \\ $$$${again}\:\:{R}+{c}={a}+{b} \\ $$$${radius}\:{ofcircle}={a}+{b}−{c} \\ $$$${eqn}\:{of}\:{circle}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\left({a}+{b}−{c}\right)^{\mathrm{2}} \leftarrow{check}\:{it} \\ $$$${pls}\:{check}\:{eqn}\:{of}\:{circle}\:{and}\:{parabola}... \\ $$$${if}\:{correct}...{then}\:{to}\:{solve}\:{to}\:{find}\:{P}\:{and}\:{Q} \\ $$

Commented by 121194 last updated on 18/Apr/19

x^2 +y^2 =R^2 (no relation)

$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} ={R}^{\mathrm{2}} \left(\mathrm{no}\:\mathrm{relation}\right) \\ $$

Commented by tanmay last updated on 18/Apr/19

let radius of cirle be l  eqn x^2 +y^2 =l^2   from figure R(0,l)  so l+c=a+b  l=a+b−c  hence circle is x^2 +y^2 =(a+b−c)^2

$${let}\:{radius}\:{of}\:{cirle}\:{be}\:{l} \\ $$$${eqn}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} ={l}^{\mathrm{2}} \\ $$$${from}\:{figure}\:{R}\left(\mathrm{0},{l}\right) \\ $$$${so}\:{l}+{c}={a}+{b} \\ $$$${l}={a}+{b}−{c} \\ $$$${hence}\:{circle}\:{is}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\left({a}+{b}−{c}\right)^{\mathrm{2}} \\ $$

Commented by ajfour last updated on 18/Apr/19

never mind Sir, it would of course  land on solving a general biquadratric,  i understand..have gotten bit busy  these days, shall post a good question  soon.

$$\mathrm{never}\:\mathrm{mind}\:\mathrm{Sir},\:\mathrm{it}\:\mathrm{would}\:\mathrm{of}\:\mathrm{course} \\ $$$$\mathrm{land}\:\mathrm{on}\:\mathrm{solving}\:\mathrm{a}\:\mathrm{general}\:\mathrm{biquadratric}, \\ $$$$\mathrm{i}\:\mathrm{understand}..\mathrm{have}\:\mathrm{gotten}\:\mathrm{bit}\:\mathrm{busy} \\ $$$$\mathrm{these}\:\mathrm{days},\:\mathrm{shall}\:\mathrm{post}\:\mathrm{a}\:\mathrm{good}\:\mathrm{question} \\ $$$$\mathrm{soon}. \\ $$

Answered by mr W last updated on 18/Apr/19

eqn. of parabola:  y=α(x−((a+b)/2))^2 +β  0=α(a−((a+b)/2))^2 +β  ⇒0=α(((a−b)/2))^2 +β   ..(i)  c=α(0−((a+b)/2))^2 +β  ⇒c=α(((a+b)/2))^2 +β   ..(ii)  (ii)−(i):  αab=c  ⇒α=(c/(ab))  ⇒β=−((c(a−b)^2 )/(4ab))  let P,Q=(u,v)  v=α(u−((a+b)/2))^2 +β    ...(iv)  u^2 +v^2 =R^2   u^2 +[α(u−((a+b)/2))^2 +β]^2 =R^2   ⇒u^2 +[(c/(ab))(u−((a+b)/2))^2 −((c(a−b)^2 )/(4ab))]^2 =R^2   ⇒u^2 +((c/(ab)))^2 (u−a)^2 (u−b)^2 =R^2    ...(iii)  from (iii) u=f(a,b,c,R)=.......  (iii) may have no solution, one solution,  two, three or four solutions.

$${eqn}.\:{of}\:{parabola}: \\ $$$${y}=\alpha\left({x}−\frac{{a}+{b}}{\mathrm{2}}\right)^{\mathrm{2}} +\beta \\ $$$$\mathrm{0}=\alpha\left({a}−\frac{{a}+{b}}{\mathrm{2}}\right)^{\mathrm{2}} +\beta \\ $$$$\Rightarrow\mathrm{0}=\alpha\left(\frac{{a}−{b}}{\mathrm{2}}\right)^{\mathrm{2}} +\beta\:\:\:..\left({i}\right) \\ $$$${c}=\alpha\left(\mathrm{0}−\frac{{a}+{b}}{\mathrm{2}}\right)^{\mathrm{2}} +\beta \\ $$$$\Rightarrow{c}=\alpha\left(\frac{{a}+{b}}{\mathrm{2}}\right)^{\mathrm{2}} +\beta\:\:\:..\left({ii}\right) \\ $$$$\left({ii}\right)−\left({i}\right): \\ $$$$\alpha{ab}={c} \\ $$$$\Rightarrow\alpha=\frac{{c}}{{ab}} \\ $$$$\Rightarrow\beta=−\frac{{c}\left({a}−{b}\right)^{\mathrm{2}} }{\mathrm{4}{ab}} \\ $$$${let}\:{P},{Q}=\left({u},{v}\right) \\ $$$${v}=\alpha\left({u}−\frac{{a}+{b}}{\mathrm{2}}\right)^{\mathrm{2}} +\beta\:\:\:\:...\left({iv}\right) \\ $$$${u}^{\mathrm{2}} +{v}^{\mathrm{2}} ={R}^{\mathrm{2}} \\ $$$${u}^{\mathrm{2}} +\left[\alpha\left({u}−\frac{{a}+{b}}{\mathrm{2}}\right)^{\mathrm{2}} +\beta\right]^{\mathrm{2}} ={R}^{\mathrm{2}} \\ $$$$\Rightarrow{u}^{\mathrm{2}} +\left[\frac{{c}}{{ab}}\left({u}−\frac{{a}+{b}}{\mathrm{2}}\right)^{\mathrm{2}} −\frac{{c}\left({a}−{b}\right)^{\mathrm{2}} }{\mathrm{4}{ab}}\right]^{\mathrm{2}} ={R}^{\mathrm{2}} \\ $$$$\Rightarrow{u}^{\mathrm{2}} +\left(\frac{{c}}{{ab}}\right)^{\mathrm{2}} \left({u}−{a}\right)^{\mathrm{2}} \left({u}−{b}\right)^{\mathrm{2}} ={R}^{\mathrm{2}} \:\:\:...\left({iii}\right) \\ $$$${from}\:\left({iii}\right)\:{u}={f}\left({a},{b},{c},{R}\right)=....... \\ $$$$\left({iii}\right)\:{may}\:{have}\:{no}\:{solution},\:{one}\:{solution}, \\ $$$${two},\:{three}\:{or}\:{four}\:{solutions}. \\ $$

Commented by ajfour last updated on 20/Apr/19

thanks sir, but i think we can arrive  at the final eq. even in the following  manner:    y=A(x−a)(x−b)  & since   −c=Aab  ⇒  A=−(c/(ab))  so   y=−(c/(ab))(x−a)(x−b)  and circle eq. is   x^2 +y^2 =R^2   hence         for x coordinates of intersection  points          x^2 +((c/(ab)))^2 (x−a)^2 (x−b)^2 =R^2   .

$$\mathrm{thanks}\:\mathrm{sir},\:\mathrm{but}\:\mathrm{i}\:\mathrm{think}\:\mathrm{we}\:\mathrm{can}\:\mathrm{arrive} \\ $$$$\mathrm{at}\:\mathrm{the}\:\mathrm{final}\:\mathrm{eq}.\:\mathrm{even}\:\mathrm{in}\:\mathrm{the}\:\mathrm{following} \\ $$$$\mathrm{manner}: \\ $$$$\:\:\mathrm{y}=\mathrm{A}\left(\mathrm{x}−\mathrm{a}\right)\left(\mathrm{x}−\mathrm{b}\right) \\ $$$$\&\:\mathrm{since}\:\:\:−\mathrm{c}=\mathrm{Aab}\:\:\Rightarrow\:\:\mathrm{A}=−\frac{\mathrm{c}}{\mathrm{ab}} \\ $$$$\mathrm{so}\:\:\:\mathrm{y}=−\frac{\mathrm{c}}{\mathrm{ab}}\left(\mathrm{x}−\mathrm{a}\right)\left(\mathrm{x}−\mathrm{b}\right) \\ $$$$\mathrm{and}\:\mathrm{circle}\:\mathrm{eq}.\:\mathrm{is}\:\:\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} =\mathrm{R}^{\mathrm{2}} \\ $$$$\mathrm{hence} \\ $$$$\:\:\:\:\:\:\:\mathrm{for}\:\mathrm{x}\:\mathrm{coordinates}\:\mathrm{of}\:\mathrm{intersection} \\ $$$$\mathrm{points} \\ $$$$\:\:\:\:\:\:\:\:\mathrm{x}^{\mathrm{2}} +\left(\frac{\mathrm{c}}{\mathrm{ab}}\right)^{\mathrm{2}} \left(\mathrm{x}−\mathrm{a}\right)^{\mathrm{2}} \left(\mathrm{x}−\mathrm{b}\right)^{\mathrm{2}} =\mathrm{R}^{\mathrm{2}} \:\:. \\ $$

Commented by mr W last updated on 20/Apr/19

very smart sir!

$${very}\:{smart}\:{sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com