Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 58171 by pierre last updated on 19/Apr/19

a particle of mass m kg is moving along  a smooth wire that is fixed in a plane.  The polar equation of the wire  is   r = ae^(3θ) . The particle moves with a cons  tant velocity of 6. At time  t = 0 , the par  ticle is at the point with polar equation  (a,θ)  a)Find the transverse and radial compo  nents of the acceleration of the particle  in terms of a and t.  b) the resultant force on the particle is  F. Show that the magnitude of F at time  t is 360mae^(18t)

$$\mathrm{a}\:\mathrm{particle}\:\mathrm{of}\:\mathrm{mass}\:\mathrm{m}\:\mathrm{kg}\:\mathrm{is}\:\mathrm{moving}\:\mathrm{along} \\ $$$$\mathrm{a}\:\mathrm{smooth}\:\mathrm{wire}\:\mathrm{that}\:\mathrm{is}\:\mathrm{fixed}\:\mathrm{in}\:\mathrm{a}\:\mathrm{plane}. \\ $$$$\mathrm{The}\:\mathrm{polar}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{the}\:\mathrm{wire}\:\:\mathrm{is}\: \\ $$$$\mathrm{r}\:=\:\mathrm{ae}^{\mathrm{3}\theta} .\:\mathrm{The}\:\mathrm{particle}\:\mathrm{moves}\:\mathrm{with}\:\mathrm{a}\:\mathrm{cons} \\ $$$$\mathrm{tant}\:\mathrm{velocity}\:\mathrm{of}\:\mathrm{6}.\:\mathrm{At}\:\mathrm{time}\:\:\mathrm{t}\:=\:\mathrm{0}\:,\:\mathrm{the}\:\mathrm{par} \\ $$$$\mathrm{ticle}\:\mathrm{is}\:\mathrm{at}\:\mathrm{the}\:\mathrm{point}\:\mathrm{with}\:\mathrm{polar}\:\mathrm{equation} \\ $$$$\left(\mathrm{a},\theta\right) \\ $$$$\left.\mathrm{a}\right)\mathrm{Find}\:\mathrm{the}\:\mathrm{transverse}\:\mathrm{and}\:\mathrm{radial}\:\mathrm{compo} \\ $$$$\mathrm{nents}\:\mathrm{of}\:\mathrm{the}\:\mathrm{acceleration}\:\mathrm{of}\:\mathrm{the}\:\mathrm{particle} \\ $$$$\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{a}\:\mathrm{and}\:\mathrm{t}. \\ $$$$\left.\mathrm{b}\right)\:\mathrm{the}\:\mathrm{resultant}\:\mathrm{force}\:\mathrm{on}\:\mathrm{the}\:\mathrm{particle}\:\mathrm{is} \\ $$$$\mathrm{F}.\:\mathrm{Show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{magnitude}\:\mathrm{of}\:\mathrm{F}\:\mathrm{at}\:\mathrm{time} \\ $$$$\mathrm{t}\:\mathrm{is}\:\mathrm{360mae}^{\mathrm{18t}} \\ $$

Answered by tanmay last updated on 19/Apr/19

a)a_r ^→ =r^(..) −r(θ^(..) )^2 →radial accelaration        a_T ^→ =2r^. θ^. +rθ^(..) →transvers accelaration  now r^. =(dr/dt)=(d/dt)(ae^(3θ) )=a×e^(3θ) ×3=3ae^(3θ) ×(dθ/dt)  r^. =3ae^(3θ) ×θ^.   r^(..) =(d/dt)(r^. )=(d/dt)(3ae^(3θ) ×θ^. )  r^(..) =3a[e^(3θ) ×θ^(..) +e^(3θ) ×3×(dθ/dt)×θ^. ]  r^(..) =3ae^(3θ) θ^(..) +9ae^(3θ) (θ^(..) )^2 →3rθ^(..) +9r(θ^(..) )^2   so a_r ^→ =r^(..) −r(^ θ^(..) )^2   a_r ^→ =3rθ^(..) +9r(θ^(..) )^2 −r(θ^(..) )^2 →3rθ^(..) +8r(θ^(..) )^2 ←radial accelaration  a_T ^→ =2r^. θ^. +rθ^(..)   a_T ^→ =2(3ae^(3θ) θ^. )θ^. +(ae^(3θ) )θ^(..)   a_T ^→ =6ae^(3θ) θ^. +ae^(3θ) θ^(..)   a_T ^→ =6rθ^. +r^ θ^(..) →transverse acc  pls check...

$$\left.{a}\right)\overset{\rightarrow} {{a}}_{{r}} =\overset{..} {{r}}−{r}\left(\overset{..} {\theta}\right)^{\mathrm{2}} \rightarrow{radial}\:{accelaration} \\ $$$$\:\:\:\:\:\:\overset{\rightarrow} {{a}}_{{T}} =\mathrm{2}\overset{.} {{r}}\overset{.} {\theta}+{r}\overset{..} {\theta}\rightarrow{transvers}\:{accelaration} \\ $$$${now}\:\overset{.} {{r}}=\frac{{dr}}{{dt}}=\frac{{d}}{{dt}}\left({ae}^{\mathrm{3}\theta} \right)={a}×{e}^{\mathrm{3}\theta} ×\mathrm{3}=\mathrm{3}{ae}^{\mathrm{3}\theta} ×\frac{{d}\theta}{{dt}} \\ $$$$\overset{.} {{r}}=\mathrm{3}{ae}^{\mathrm{3}\theta} ×\overset{.} {\theta} \\ $$$$\overset{..} {{r}}=\frac{{d}}{{dt}}\left(\overset{.} {{r}}\right)=\frac{{d}}{{dt}}\left(\mathrm{3}{ae}^{\mathrm{3}\theta} ×\overset{.} {\theta}\right) \\ $$$$\overset{..} {{r}}=\mathrm{3}{a}\left[{e}^{\mathrm{3}\theta} ×\overset{..} {\theta}+{e}^{\mathrm{3}\theta} ×\mathrm{3}×\frac{{d}\theta}{{dt}}×\overset{.} {\theta}\right] \\ $$$$\overset{..} {{r}}=\mathrm{3}{ae}^{\mathrm{3}\theta} \overset{..} {\theta}+\mathrm{9}{ae}^{\mathrm{3}\theta} \left(\overset{..} {\theta}\right)^{\mathrm{2}} \rightarrow\mathrm{3}{r}\overset{..} {\theta}+\mathrm{9}{r}\left(\overset{..} {\theta}\right)^{\mathrm{2}} \\ $$$${so}\:\overset{\rightarrow} {{a}}_{{r}} =\overset{..} {{r}}−{r}\overset{} {\left(}\overset{..} {\theta}\right)^{\mathrm{2}} \\ $$$$\overset{\rightarrow} {{a}}_{{r}} =\mathrm{3}{r}\overset{..} {\theta}+\mathrm{9}{r}\left(\overset{..} {\theta}\right)^{\mathrm{2}} −{r}\left(\overset{..} {\theta}\right)^{\mathrm{2}} \rightarrow\mathrm{3}\boldsymbol{{r}}\overset{..} {\theta}+\mathrm{8}{r}\left(\overset{..} {\theta}\right)^{\mathrm{2}} \leftarrow{radial}\:{accelaration} \\ $$$$\overset{\rightarrow} {{a}}_{{T}} =\mathrm{2}\overset{.} {{r}}\overset{.} {\theta}+{r}\overset{..} {\theta} \\ $$$$\overset{\rightarrow} {{a}}_{{T}} =\mathrm{2}\left(\mathrm{3}{ae}^{\mathrm{3}\theta} \overset{.} {\theta}\right)\overset{.} {\theta}+\left({ae}^{\mathrm{3}\theta} \right)\overset{..} {\theta} \\ $$$$\overset{\rightarrow} {{a}}_{{T}} =\mathrm{6}{ae}^{\mathrm{3}\theta} \overset{.} {\theta}+{ae}^{\mathrm{3}\theta} \overset{..} {\theta} \\ $$$$\overset{\rightarrow} {{a}}_{{T}} =\mathrm{6}{r}\overset{.} {\theta}+\overset{} {{r}}\overset{..} {\theta}\rightarrow{transverse}\:{acc} \\ $$$$\boldsymbol{{pls}}\:\boldsymbol{{check}}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com