Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 58195 by salaw2000 last updated on 19/Apr/19

(1/x)+(1/y)=(3/4)  (x^2 /y)+(y^2 /x)=9  find the value of x and y

$$\frac{\mathrm{1}}{\mathrm{x}}+\frac{\mathrm{1}}{\mathrm{y}}=\frac{\mathrm{3}}{\mathrm{4}} \\ $$$$\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{y}}+\frac{\mathrm{y}^{\mathrm{2}} }{\mathrm{x}}=\mathrm{9} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{x}\:\mathrm{and}\:\mathrm{y} \\ $$

Answered by Kunal12588 last updated on 19/Apr/19

(1/x)+(1/y)=(3/4)  ⇒((x+y)/(xy))=(3/4)         (1)  ⇒x+y=((3xy)/4)      (2)  (x^2 /y)+(y^2 /x)=9  ⇒((x+y)/(xy))(x^2 −xy+y^2 )=9  from (1)  ⇒x^2 −xy+y^2 =12  ⇒(x+y)^2 −3xy=12        (3)  ⇒(x−y)^2 +xy=12           (4)  from (3)  x+y=±(√(3xy+12))               but from (2)  ((3xy)/4)=(√(3xy+12))  ⇒3∙3x^2 y^2 =16[3(xy+4)]  ⇒3x^2 y^2 −16xy−64=0  ⇒xy=((16±(√(16^2 −4∙3∙(−64))))/(2∙3))  ⇒xy=((48)/6),((−16)/6)  ⇒xy=8,((−8)/3)  (i) xy=8  putting xy in (2)  x+y=6    (5)  putting xy in (4)  (x−y)^2 =12−8  ⇒x−y=±(√4)  ⇒x−y=2 or x−y=−2  (a)  taking x−y=2  and comparing with (5)  1^(st)  answer   x=4,y=2  (b)  taking x−y=−2  and comparing with (5)  2^(nd)  answer x=2,y=4  (ii) xy=((−8)/3)  putting xy in (2)  x+y=−2     (6)  putting xy in (4)  (x−y)^2 +xy=12  3(x−y)^2 −8=36  x−y=±(√((44)/3))  (a)  taking x−y=(√((44)/3))  and comparing with (6)  3^(rd)  answer x=−1+(√((11)/3)),y=−1−(√((11)/3))  (b)  taking x−y=−(√((44)/3))  and comparing with (6)  4^(th)  answer x=−1−(√((11)/3)),y=−1+(√((11)/3))

$$\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{y}}=\frac{\mathrm{3}}{\mathrm{4}} \\ $$$$\Rightarrow\frac{{x}+{y}}{{xy}}=\frac{\mathrm{3}}{\mathrm{4}}\:\:\:\:\:\:\:\:\:\left(\mathrm{1}\right) \\ $$$$\Rightarrow{x}+{y}=\frac{\mathrm{3}{xy}}{\mathrm{4}}\:\:\:\:\:\:\left(\mathrm{2}\right) \\ $$$$\frac{{x}^{\mathrm{2}} }{{y}}+\frac{{y}^{\mathrm{2}} }{{x}}=\mathrm{9} \\ $$$$\Rightarrow\frac{{x}+{y}}{{xy}}\left({x}^{\mathrm{2}} −{xy}+{y}^{\mathrm{2}} \right)=\mathrm{9} \\ $$$${from}\:\left(\mathrm{1}\right) \\ $$$$\Rightarrow{x}^{\mathrm{2}} −{xy}+{y}^{\mathrm{2}} =\mathrm{12} \\ $$$$\Rightarrow\left({x}+{y}\right)^{\mathrm{2}} −\mathrm{3}{xy}=\mathrm{12}\:\:\:\:\:\:\:\:\left(\mathrm{3}\right) \\ $$$$\Rightarrow\left({x}−{y}\right)^{\mathrm{2}} +{xy}=\mathrm{12}\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{4}\right) \\ $$$${from}\:\left(\mathrm{3}\right) \\ $$$${x}+{y}=\pm\sqrt{\mathrm{3}{xy}+\mathrm{12}}\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$${but}\:{from}\:\left(\mathrm{2}\right) \\ $$$$\frac{\mathrm{3}{xy}}{\mathrm{4}}=\sqrt{\mathrm{3}{xy}+\mathrm{12}} \\ $$$$\Rightarrow\mathrm{3}\centerdot\mathrm{3}{x}^{\mathrm{2}} {y}^{\mathrm{2}} =\mathrm{16}\left[\mathrm{3}\left({xy}+\mathrm{4}\right)\right] \\ $$$$\Rightarrow\mathrm{3}{x}^{\mathrm{2}} {y}^{\mathrm{2}} −\mathrm{16}{xy}−\mathrm{64}=\mathrm{0} \\ $$$$\Rightarrow{xy}=\frac{\mathrm{16}\pm\sqrt{\mathrm{16}^{\mathrm{2}} −\mathrm{4}\centerdot\mathrm{3}\centerdot\left(−\mathrm{64}\right)}}{\mathrm{2}\centerdot\mathrm{3}} \\ $$$$\Rightarrow{xy}=\frac{\mathrm{48}}{\mathrm{6}},\frac{−\mathrm{16}}{\mathrm{6}} \\ $$$$\Rightarrow{xy}=\mathrm{8},\frac{−\mathrm{8}}{\mathrm{3}} \\ $$$$\left({i}\right)\:{xy}=\mathrm{8} \\ $$$${putting}\:{xy}\:{in}\:\left(\mathrm{2}\right) \\ $$$${x}+{y}=\mathrm{6}\:\:\:\:\left(\mathrm{5}\right) \\ $$$${putting}\:{xy}\:{in}\:\left(\mathrm{4}\right) \\ $$$$\left({x}−{y}\right)^{\mathrm{2}} =\mathrm{12}−\mathrm{8} \\ $$$$\Rightarrow{x}−{y}=\pm\sqrt{\mathrm{4}} \\ $$$$\Rightarrow{x}−{y}=\mathrm{2}\:{or}\:{x}−{y}=−\mathrm{2} \\ $$$$\left({a}\right)\:\:{taking}\:{x}−{y}=\mathrm{2} \\ $$$${and}\:{comparing}\:{with}\:\left(\mathrm{5}\right) \\ $$$$\mathrm{1}^{{st}} \:{answer}\:\:\:{x}=\mathrm{4},{y}=\mathrm{2} \\ $$$$\left({b}\right)\:\:{taking}\:{x}−{y}=−\mathrm{2} \\ $$$${and}\:{comparing}\:{with}\:\left(\mathrm{5}\right) \\ $$$$\mathrm{2}^{{nd}} \:{answer}\:{x}=\mathrm{2},{y}=\mathrm{4} \\ $$$$\left({ii}\right)\:{xy}=\frac{−\mathrm{8}}{\mathrm{3}} \\ $$$${putting}\:{xy}\:{in}\:\left(\mathrm{2}\right) \\ $$$${x}+{y}=−\mathrm{2}\:\:\:\:\:\left(\mathrm{6}\right) \\ $$$${putting}\:{xy}\:{in}\:\left(\mathrm{4}\right) \\ $$$$\left({x}−{y}\right)^{\mathrm{2}} +{xy}=\mathrm{12} \\ $$$$\mathrm{3}\left({x}−{y}\right)^{\mathrm{2}} −\mathrm{8}=\mathrm{36} \\ $$$${x}−{y}=\pm\sqrt{\frac{\mathrm{44}}{\mathrm{3}}} \\ $$$$\left({a}\right)\:\:{taking}\:{x}−{y}=\sqrt{\frac{\mathrm{44}}{\mathrm{3}}} \\ $$$${and}\:{comparing}\:{with}\:\left(\mathrm{6}\right) \\ $$$$\mathrm{3}^{{rd}} \:{answer}\:{x}=−\mathrm{1}+\sqrt{\frac{\mathrm{11}}{\mathrm{3}}},{y}=−\mathrm{1}−\sqrt{\frac{\mathrm{11}}{\mathrm{3}}} \\ $$$$\left({b}\right)\:\:{taking}\:{x}−{y}=−\sqrt{\frac{\mathrm{44}}{\mathrm{3}}} \\ $$$${and}\:{comparing}\:{with}\:\left(\mathrm{6}\right) \\ $$$$\mathrm{4}^{{th}} \:{answer}\:{x}=−\mathrm{1}−\sqrt{\frac{\mathrm{11}}{\mathrm{3}}},{y}=−\mathrm{1}+\sqrt{\frac{\mathrm{11}}{\mathrm{3}}} \\ $$

Commented by salaw2000 last updated on 19/Apr/19

thank you very much

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\: \\ $$

Answered by MJS last updated on 19/Apr/19

(1) y=((4x)/(3x−4))  (2) x^3 +y^3 −9xy=0  (1) in (2) ⇒  x^4 −4x^3 −((20)/3)x^2 +32x−((64)/3)=0  trying factors of ±((64)/3) we find  x_1 =2; x_2 =4  ⇒  (x−2)(x−4)(x^2 +2x−(8/3))=0  ⇒ x_3 =−1−((√(33))/3); x_4 =−1+((√(33))/3)  ⇒  ((x),(y) )∈{ ((2),(4) ),  ((4),(2) ),  (((−1−((√(33))/3))),((−1+((√(33))/3))) ) ,  (((−1−((√(33))/3))),((−1+((√(33))/3))) ) }

$$\left(\mathrm{1}\right)\:{y}=\frac{\mathrm{4}{x}}{\mathrm{3}{x}−\mathrm{4}} \\ $$$$\left(\mathrm{2}\right)\:{x}^{\mathrm{3}} +{y}^{\mathrm{3}} −\mathrm{9}{xy}=\mathrm{0} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{in}\:\left(\mathrm{2}\right)\:\Rightarrow \\ $$$${x}^{\mathrm{4}} −\mathrm{4}{x}^{\mathrm{3}} −\frac{\mathrm{20}}{\mathrm{3}}{x}^{\mathrm{2}} +\mathrm{32}{x}−\frac{\mathrm{64}}{\mathrm{3}}=\mathrm{0} \\ $$$$\mathrm{trying}\:\mathrm{factors}\:\mathrm{of}\:\pm\frac{\mathrm{64}}{\mathrm{3}}\:\mathrm{we}\:\mathrm{find} \\ $$$${x}_{\mathrm{1}} =\mathrm{2};\:{x}_{\mathrm{2}} =\mathrm{4} \\ $$$$\Rightarrow \\ $$$$\left({x}−\mathrm{2}\right)\left({x}−\mathrm{4}\right)\left({x}^{\mathrm{2}} +\mathrm{2}{x}−\frac{\mathrm{8}}{\mathrm{3}}\right)=\mathrm{0} \\ $$$$\Rightarrow\:{x}_{\mathrm{3}} =−\mathrm{1}−\frac{\sqrt{\mathrm{33}}}{\mathrm{3}};\:{x}_{\mathrm{4}} =−\mathrm{1}+\frac{\sqrt{\mathrm{33}}}{\mathrm{3}} \\ $$$$\Rightarrow\:\begin{pmatrix}{{x}}\\{{y}}\end{pmatrix}\in\left\{\begin{pmatrix}{\mathrm{2}}\\{\mathrm{4}}\end{pmatrix},\:\begin{pmatrix}{\mathrm{4}}\\{\mathrm{2}}\end{pmatrix},\:\begin{pmatrix}{−\mathrm{1}−\frac{\sqrt{\mathrm{33}}}{\mathrm{3}}}\\{−\mathrm{1}+\frac{\sqrt{\mathrm{33}}}{\mathrm{3}}}\end{pmatrix}\:,\:\begin{pmatrix}{−\mathrm{1}−\frac{\sqrt{\mathrm{33}}}{\mathrm{3}}}\\{−\mathrm{1}+\frac{\sqrt{\mathrm{33}}}{\mathrm{3}}}\end{pmatrix}\:\right\} \\ $$

Commented by Kunal12588 last updated on 19/Apr/19

Sir you are making me think why I did that ����

Commented by MJS last updated on 19/Apr/19

different paths lead to the same solutions −  that′s a good thing!

$$\mathrm{different}\:\mathrm{paths}\:\mathrm{lead}\:\mathrm{to}\:\mathrm{the}\:\mathrm{same}\:\mathrm{solutions}\:− \\ $$$$\mathrm{that}'\mathrm{s}\:\mathrm{a}\:\mathrm{good}\:\mathrm{thing}! \\ $$

Commented by salaw2000 last updated on 19/Apr/19

a very big thanks to you

$$\mathrm{a}\:\mathrm{very}\:\mathrm{big}\:\mathrm{thanks}\:\mathrm{to}\:\mathrm{you} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com