Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 58240 by salaw2000 last updated on 20/Apr/19

i=∫dx/(ax^2 +bx+c)^(3/2)

$$\mathrm{i}=\int\mathrm{dx}/\left(\mathrm{ax}^{\mathrm{2}} +\mathrm{bx}+\mathrm{c}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} \\ $$

Commented by maxmathsup by imad last updated on 21/Apr/19

let I =∫  (dx/((ax^2  +bx +c)^(3/2) ))  let p(x)=ax^2  +bx +c  Δ =b^2 −4ac   if Δ <0 ⇒non roots  and p(x)=a(x^2  +2(b/(2a))x +(b^2 /(4a^2 )) +c−(b^2 /(4a^2 )))  =a{ (x+(b/(2a)))^2  +((4ac −b^2 )/(4a^2 ))} we use the changement (x+(b/(2a)))=((√(4ac−b^2 ))/(2a))sh(t) ⇒  I = ∫ (1/(a^(3/2) (((4ac−b^2 )/(4a^2 )))^(3/2) (1+sh^2 t)^(3/2) ))((√(4ac−b^2 ))/(2a)) ch(t)dt  =((√(4ac−b^2 ))/(2a^(5/2)    (((4ac−b^2 )/(4a^2 )))(√((4ac−b^2 )/(4a^2 ))))) ∫  (dt/(ch^3 (t))) =((2a)/(2a^(5/2) )) ((4a^2 )/(4ac−b^2 )) ∫   (dt/((((e^t  +e^(−t) )/2))^3 ))  =4 a^(2−(3/2))  (1/(4ac−b^2 )) ∫   (8/((e^t  +e^(−t) )^3 )) dt =((32(√a))/(4ac−b^2 )) ∫   (dt/(e^(3t)  +3 e^(2t)  e^(−t)  +3 e^t  e^(−2t)  +e^(−3t) ))  =((32(√a))/(4ac−b^2 )) ∫  (dt/(e^(3t)  +3 e^t  +3 e^(−t)  +e^(−3t) )) =_(e^t  =u)    λ  ∫    (du/(u(u^3  +3u +3u^(−1)  +u^(−3) )))  =λ ∫    (du/(u^4  +3u^2  +3 u^(−2) )) =λ ∫    ((u^2  du)/(u^6  +3u^4  +3))   ...be continued...

$${let}\:{I}\:=\int\:\:\frac{{dx}}{\left({ax}^{\mathrm{2}} \:+{bx}\:+{c}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} }\:\:{let}\:{p}\left({x}\right)={ax}^{\mathrm{2}} \:+{bx}\:+{c} \\ $$$$\Delta\:={b}^{\mathrm{2}} −\mathrm{4}{ac}\:\:\:{if}\:\Delta\:<\mathrm{0}\:\Rightarrow{non}\:{roots}\:\:{and}\:{p}\left({x}\right)={a}\left({x}^{\mathrm{2}} \:+\mathrm{2}\frac{{b}}{\mathrm{2}{a}}{x}\:+\frac{{b}^{\mathrm{2}} }{\mathrm{4}{a}^{\mathrm{2}} }\:+{c}−\frac{{b}^{\mathrm{2}} }{\mathrm{4}{a}^{\mathrm{2}} }\right) \\ $$$$={a}\left\{\:\left({x}+\frac{{b}}{\mathrm{2}{a}}\right)^{\mathrm{2}} \:+\frac{\mathrm{4}{ac}\:−{b}^{\mathrm{2}} }{\mathrm{4}{a}^{\mathrm{2}} }\right\}\:{we}\:{use}\:{the}\:{changement}\:\left({x}+\frac{{b}}{\mathrm{2}{a}}\right)=\frac{\sqrt{\mathrm{4}{ac}−{b}^{\mathrm{2}} }}{\mathrm{2}{a}}{sh}\left({t}\right)\:\Rightarrow \\ $$$${I}\:=\:\int\:\frac{\mathrm{1}}{{a}^{\frac{\mathrm{3}}{\mathrm{2}}} \left(\frac{\mathrm{4}{ac}−{b}^{\mathrm{2}} }{\mathrm{4}{a}^{\mathrm{2}} }\right)^{\frac{\mathrm{3}}{\mathrm{2}}} \left(\mathrm{1}+{sh}^{\mathrm{2}} {t}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} }\frac{\sqrt{\mathrm{4}{ac}−{b}^{\mathrm{2}} }}{\mathrm{2}{a}}\:{ch}\left({t}\right){dt} \\ $$$$=\frac{\sqrt{\mathrm{4}{ac}−{b}^{\mathrm{2}} }}{\mathrm{2}{a}^{\frac{\mathrm{5}}{\mathrm{2}}} \:\:\:\left(\frac{\mathrm{4}{ac}−{b}^{\mathrm{2}} }{\mathrm{4}{a}^{\mathrm{2}} }\right)\sqrt{\frac{\mathrm{4}{ac}−{b}^{\mathrm{2}} }{\mathrm{4}{a}^{\mathrm{2}} }}}\:\int\:\:\frac{{dt}}{{ch}^{\mathrm{3}} \left({t}\right)}\:=\frac{\mathrm{2}{a}}{\mathrm{2}{a}^{\frac{\mathrm{5}}{\mathrm{2}}} }\:\frac{\mathrm{4}{a}^{\mathrm{2}} }{\mathrm{4}{ac}−{b}^{\mathrm{2}} }\:\int\:\:\:\frac{{dt}}{\left(\frac{{e}^{{t}} \:+{e}^{−{t}} }{\mathrm{2}}\right)^{\mathrm{3}} } \\ $$$$=\mathrm{4}\:{a}^{\mathrm{2}−\frac{\mathrm{3}}{\mathrm{2}}} \:\frac{\mathrm{1}}{\mathrm{4}{ac}−{b}^{\mathrm{2}} }\:\int\:\:\:\frac{\mathrm{8}}{\left({e}^{{t}} \:+{e}^{−{t}} \right)^{\mathrm{3}} }\:{dt}\:=\frac{\mathrm{32}\sqrt{{a}}}{\mathrm{4}{ac}−{b}^{\mathrm{2}} }\:\int\:\:\:\frac{{dt}}{{e}^{\mathrm{3}{t}} \:+\mathrm{3}\:{e}^{\mathrm{2}{t}} \:{e}^{−{t}} \:+\mathrm{3}\:{e}^{{t}} \:{e}^{−\mathrm{2}{t}} \:+{e}^{−\mathrm{3}{t}} } \\ $$$$=\frac{\mathrm{32}\sqrt{{a}}}{\mathrm{4}{ac}−{b}^{\mathrm{2}} }\:\int\:\:\frac{{dt}}{{e}^{\mathrm{3}{t}} \:+\mathrm{3}\:{e}^{{t}} \:+\mathrm{3}\:{e}^{−{t}} \:+{e}^{−\mathrm{3}{t}} }\:=_{{e}^{{t}} \:={u}} \:\:\:\lambda\:\:\int\:\:\:\:\frac{{du}}{{u}\left({u}^{\mathrm{3}} \:+\mathrm{3}{u}\:+\mathrm{3}{u}^{−\mathrm{1}} \:+{u}^{−\mathrm{3}} \right)} \\ $$$$=\lambda\:\int\:\:\:\:\frac{{du}}{{u}^{\mathrm{4}} \:+\mathrm{3}{u}^{\mathrm{2}} \:+\mathrm{3}\:{u}^{−\mathrm{2}} }\:=\lambda\:\int\:\:\:\:\frac{{u}^{\mathrm{2}} \:{du}}{{u}^{\mathrm{6}} \:+\mathrm{3}{u}^{\mathrm{4}} \:+\mathrm{3}}\:\:\:...{be}\:{continued}... \\ $$$$ \\ $$

Commented by salaw2000 last updated on 06/May/19

thanks sir

$$\mathrm{thanks}\:\mathrm{sir} \\ $$

Answered by tanmay last updated on 20/Apr/19

Commented by tanmay last updated on 20/Apr/19

Commented by tanmay last updated on 20/Apr/19

(4/a^(3/2) )×(1/({(((−b)/a))^2 −((4c)/a)}))×[ln(cosecθ−cotθ)+cosθ]+c  now tanθ=((√t)/((α−β)^(1/4) ))→cotθ=(((α−β)^(1/4) )/(√t))  coesecθ=[1+(((α−β)^(1/2) )/t)]^(1/2) and cosθ=(1/([1+(t/((α−β)^(1/2) ))]^(1/2) ))  (4/a^(3/2) )×(a^2 /((b^2 −4ac)))×ln(cosecθ−cotθ)+cosθ +c  pls put the value of cosecθ,cotθ and cosθ  finally replace t by (√(x−α))

$$\frac{\mathrm{4}}{{a}^{\frac{\mathrm{3}}{\mathrm{2}}} }×\frac{\mathrm{1}}{\left\{\left(\frac{−{b}}{{a}}\right)^{\mathrm{2}} −\frac{\mathrm{4}{c}}{{a}}\right\}}×\left[{ln}\left({cosec}\theta−{cot}\theta\right)+{cos}\theta\right]+{c} \\ $$$${now}\:{tan}\theta=\frac{\sqrt{{t}}}{\left(\alpha−\beta\right)^{\frac{\mathrm{1}}{\mathrm{4}}} }\rightarrow{cot}\theta=\frac{\left(\alpha−\beta\right)^{\frac{\mathrm{1}}{\mathrm{4}}} }{\sqrt{{t}}} \\ $$$${coesec}\theta=\left[\mathrm{1}+\frac{\left(\alpha−\beta\right)^{\frac{\mathrm{1}}{\mathrm{2}}} }{{t}}\right]^{\frac{\mathrm{1}}{\mathrm{2}}} {and}\:{cos}\theta=\frac{\mathrm{1}}{\left[\mathrm{1}+\frac{{t}}{\left(\alpha−\beta\right)^{\frac{\mathrm{1}}{\mathrm{2}}} }\right]^{\frac{\mathrm{1}}{\mathrm{2}}} } \\ $$$$\frac{\mathrm{4}}{{a}^{\frac{\mathrm{3}}{\mathrm{2}}} }×\frac{{a}^{\mathrm{2}} }{\left({b}^{\mathrm{2}} −\mathrm{4}{ac}\right)}×{ln}\left({cosec}\theta−{cot}\theta\right)+{cos}\theta\:+{c} \\ $$$${pls}\:{put}\:{the}\:{value}\:{of}\:{cosec}\theta,{cot}\theta\:{and}\:{cos}\theta \\ $$$${finally}\:{replace}\:{t}\:{by}\:\sqrt{{x}−\alpha}\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com