Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 58257 by ajfour last updated on 20/Apr/19

Commented by ajfour last updated on 20/Apr/19

Find equilibrium angles α and β if  the hemisphere is fixed and   frictionless and string has length l.

$$\mathrm{Find}\:{equilibrium}\:{angles}\:\alpha\:\mathrm{and}\:\beta\:\mathrm{if} \\ $$$$\mathrm{the}\:\mathrm{hemisphere}\:\mathrm{is}\:\mathrm{fixed}\:\mathrm{and}\: \\ $$$$\mathrm{frictionless}\:\mathrm{and}\:\mathrm{string}\:\mathrm{has}\:\mathrm{length}\:{l}. \\ $$

Answered by mr W last updated on 20/Apr/19

Commented by mr W last updated on 20/Apr/19

AC=(√(R^2 +h^2 −2Rh cos α))  BC=(√(R^2 +h^2 −2Rh cos β))  (√(R^2 +h^2 −2Rh cos α))+(√(R^2 +h^2 −2Rh cos β))=l  with κ=(R/l), λ=(h/l)  ⇒(√(κ^2 +λ^2 −2κλ cos α))+(√(κ^2 +λ^2 −2κλ cos β))=1    ...(i)  Mg sin α=T cos (∠OAC−(π/2))=T sin ∠OAC  sin ∠OAC=((h sin α)/(√(R^2 +h^2 −2Rh cos α)))  ⇒Mg=((Th)/(√(R^2 +h^2 −2Rh cos α)))  ⇒Th=Mg(√(R^2 +h^2 −2Rh cos α))  similarly  ⇒Th=mg(√(R^2 +h^2 −2Rh cos β))  with μ=(M/m)  ⇒μ(√(κ^2 +λ^2 −2κλ cos α))=(√(κ^2 +λ^2 −2κλ cos β))    ..(ii)    with a=(√(κ^2 +λ^2 −2κλ cos α)), b=(√(κ^2 +λ^2 −2κλ cos β))  ⇒a+b=1  ⇒μa=b  ⇒a=(√(κ^2 +λ^2 −2κλ cos α))=(1/(1+μ))=δ=(m/(M+m))  ⇒cos α=((κ^2 +λ^2 −δ^2 )/(2κλ))  ⇒α=cos^(−1) ((κ^2 +λ^2 −δ^2 )/(2κλ))=cos^(−1) ((R^2 +h^2 −(((ml)/(M+m)))^2 )/(2Rh))  similarly  ⇒β=cos^(−1) ((R^2 +h^2 −(((Ml)/(M+m)))^2 )/(2Rh))

$${AC}=\sqrt{{R}^{\mathrm{2}} +{h}^{\mathrm{2}} −\mathrm{2}{Rh}\:\mathrm{cos}\:\alpha} \\ $$$${BC}=\sqrt{{R}^{\mathrm{2}} +{h}^{\mathrm{2}} −\mathrm{2}{Rh}\:\mathrm{cos}\:\beta} \\ $$$$\sqrt{{R}^{\mathrm{2}} +{h}^{\mathrm{2}} −\mathrm{2}{Rh}\:\mathrm{cos}\:\alpha}+\sqrt{{R}^{\mathrm{2}} +{h}^{\mathrm{2}} −\mathrm{2}{Rh}\:\mathrm{cos}\:\beta}={l} \\ $$$${with}\:\kappa=\frac{{R}}{{l}},\:\lambda=\frac{{h}}{{l}} \\ $$$$\Rightarrow\sqrt{\kappa^{\mathrm{2}} +\lambda^{\mathrm{2}} −\mathrm{2}\kappa\lambda\:\mathrm{cos}\:\alpha}+\sqrt{\kappa^{\mathrm{2}} +\lambda^{\mathrm{2}} −\mathrm{2}\kappa\lambda\:\mathrm{cos}\:\beta}=\mathrm{1}\:\:\:\:...\left({i}\right) \\ $$$${Mg}\:\mathrm{sin}\:\alpha={T}\:\mathrm{cos}\:\left(\angle{OAC}−\frac{\pi}{\mathrm{2}}\right)={T}\:\mathrm{sin}\:\angle{OAC} \\ $$$$\mathrm{sin}\:\angle{OAC}=\frac{{h}\:\mathrm{sin}\:\alpha}{\sqrt{{R}^{\mathrm{2}} +{h}^{\mathrm{2}} −\mathrm{2}{Rh}\:\mathrm{cos}\:\alpha}} \\ $$$$\Rightarrow{Mg}=\frac{{Th}}{\sqrt{{R}^{\mathrm{2}} +{h}^{\mathrm{2}} −\mathrm{2}{Rh}\:\mathrm{cos}\:\alpha}} \\ $$$$\Rightarrow{Th}={Mg}\sqrt{{R}^{\mathrm{2}} +{h}^{\mathrm{2}} −\mathrm{2}{Rh}\:\mathrm{cos}\:\alpha} \\ $$$${similarly} \\ $$$$\Rightarrow{Th}={mg}\sqrt{{R}^{\mathrm{2}} +{h}^{\mathrm{2}} −\mathrm{2}{Rh}\:\mathrm{cos}\:\beta} \\ $$$${with}\:\mu=\frac{{M}}{{m}} \\ $$$$\Rightarrow\mu\sqrt{\kappa^{\mathrm{2}} +\lambda^{\mathrm{2}} −\mathrm{2}\kappa\lambda\:\mathrm{cos}\:\alpha}=\sqrt{\kappa^{\mathrm{2}} +\lambda^{\mathrm{2}} −\mathrm{2}\kappa\lambda\:\mathrm{cos}\:\beta}\:\:\:\:..\left({ii}\right) \\ $$$$ \\ $$$${with}\:{a}=\sqrt{\kappa^{\mathrm{2}} +\lambda^{\mathrm{2}} −\mathrm{2}\kappa\lambda\:\mathrm{cos}\:\alpha},\:{b}=\sqrt{\kappa^{\mathrm{2}} +\lambda^{\mathrm{2}} −\mathrm{2}\kappa\lambda\:\mathrm{cos}\:\beta} \\ $$$$\Rightarrow{a}+{b}=\mathrm{1} \\ $$$$\Rightarrow\mu{a}={b} \\ $$$$\Rightarrow{a}=\sqrt{\kappa^{\mathrm{2}} +\lambda^{\mathrm{2}} −\mathrm{2}\kappa\lambda\:\mathrm{cos}\:\alpha}=\frac{\mathrm{1}}{\mathrm{1}+\mu}=\delta=\frac{{m}}{{M}+{m}} \\ $$$$\Rightarrow\mathrm{cos}\:\alpha=\frac{\kappa^{\mathrm{2}} +\lambda^{\mathrm{2}} −\delta^{\mathrm{2}} }{\mathrm{2}\kappa\lambda} \\ $$$$\Rightarrow\alpha=\mathrm{cos}^{−\mathrm{1}} \frac{\kappa^{\mathrm{2}} +\lambda^{\mathrm{2}} −\delta^{\mathrm{2}} }{\mathrm{2}\kappa\lambda}=\mathrm{cos}^{−\mathrm{1}} \frac{{R}^{\mathrm{2}} +{h}^{\mathrm{2}} −\left(\frac{{ml}}{{M}+{m}}\right)^{\mathrm{2}} }{\mathrm{2}{Rh}} \\ $$$${similarly} \\ $$$$\Rightarrow\beta=\mathrm{cos}^{−\mathrm{1}} \frac{{R}^{\mathrm{2}} +{h}^{\mathrm{2}} −\left(\frac{{Ml}}{{M}+{m}}\right)^{\mathrm{2}} }{\mathrm{2}{Rh}} \\ $$

Commented by ajfour last updated on 21/Apr/19

SUPER AWESOME ! Sir.

$$\mathcal{SUPER}\:\mathcal{AWESOME}\:!\:{Sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com