Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 58438 by salahahmed last updated on 23/Apr/19

lim_(x→∞)  (((x−1)/x))^x

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left(\frac{{x}−\mathrm{1}}{{x}}\right)^{{x}} \\ $$

Commented by mr W last updated on 23/Apr/19

=lim_(x→∞)  ((1/(x/(x−1))))^x   =lim_(x→∞)  (1/(((x/(x−1)))((x/(x−1)))^(x−1) ))  =lim_(x→∞)  (1/(((1/(1−(1/x))))(1+(1/(x−1)))^(x−1) ))  =(1/(1×e))  =(1/e)

$$=\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left(\frac{\mathrm{1}}{\frac{{x}}{{x}−\mathrm{1}}}\right)^{{x}} \\ $$$$=\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{1}}{\left(\frac{{x}}{{x}−\mathrm{1}}\right)\left(\frac{{x}}{{x}−\mathrm{1}}\right)^{{x}−\mathrm{1}} } \\ $$$$=\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{1}}{\left(\frac{\mathrm{1}}{\mathrm{1}−\frac{\mathrm{1}}{{x}}}\right)\left(\mathrm{1}+\frac{\mathrm{1}}{{x}−\mathrm{1}}\right)^{{x}−\mathrm{1}} } \\ $$$$=\frac{\mathrm{1}}{\mathrm{1}×{e}} \\ $$$$=\frac{\mathrm{1}}{{e}} \\ $$

Commented by salahahmed last updated on 23/Apr/19

Why does (((1/x)/(x−1)))^x =((((x/(x−1))))/(((x/(x−1)))^(x−1) )) and ((x/(x−1)))^(x−1) =(1+(1/(x−1)))^(x−1)

$$\mathrm{Why}\:\mathrm{does}\:\left(\frac{\frac{\mathrm{1}}{{x}}}{{x}−\mathrm{1}}\right)^{{x}} =\frac{\left(\frac{{x}}{{x}−\mathrm{1}}\right)}{\left(\frac{{x}}{{x}−\mathrm{1}}\right)^{{x}−\mathrm{1}} }\:\mathrm{and}\:\left(\frac{{x}}{{x}−\mathrm{1}}\right)^{{x}−\mathrm{1}} =\left(\mathrm{1}+\frac{\mathrm{1}}{{x}−\mathrm{1}}\right)^{{x}−\mathrm{1}} \\ $$

Commented by mr W last updated on 23/Apr/19

it is (((1/x)/(x−1)))^x =(((((x−1)/x)))/(((x/(x−1)))^(x−1) ))=(((1−(1/x)))/(((x/(x−1)))^(x−1) ))  ((x/(x−1)))^(x−1) =(((x−1+1)/(x−1)))^(x−1) =(1+(1/(x−1)))^(x−1)

$${it}\:{is}\:\left(\frac{\frac{\mathrm{1}}{{x}}}{{x}−\mathrm{1}}\right)^{{x}} =\frac{\left(\frac{{x}−\mathrm{1}}{{x}}\right)}{\left(\frac{{x}}{{x}−\mathrm{1}}\right)^{{x}−\mathrm{1}} }=\frac{\left(\mathrm{1}−\frac{\mathrm{1}}{{x}}\right)}{\left(\frac{{x}}{{x}−\mathrm{1}}\right)^{{x}−\mathrm{1}} } \\ $$$$\left(\frac{{x}}{{x}−\mathrm{1}}\right)^{{x}−\mathrm{1}} =\left(\frac{{x}−\mathrm{1}+\mathrm{1}}{{x}−\mathrm{1}}\right)^{{x}−\mathrm{1}} =\left(\mathrm{1}+\frac{\mathrm{1}}{{x}−\mathrm{1}}\right)^{{x}−\mathrm{1}} \\ $$

Commented by maxmathsup by imad last updated on 23/Apr/19

let A(x) =(((x−1)/x))^x  ⇒A(x)=(1−(1/x))^x    ⇒for x>0   ln(A(x)) =xln(1−(1/x))   but we have ln^′ (1−u) =−(1/(1−u)) =−(1+u +o(u^2 )) ⇒  ln(1−u) =−u−(u^2 /2) +o(u^3 ) ⇒ln(1−(1/x))=−(1/x) −(1/(2x^2 )) +o((1/x^3 )) (x→+∞) ⇒  xln(1−(1/x))=−1−(1/(2x)) +o((1/x^2 )) ⇒lim_(x→+∞) xln(1−(1/x))=−1 ⇒  lim_(x→+∞)  ln(A(x))=−1 ⇒ lim_(x→+∞)  A(x) =e^(−1)  =(1/e)

$${let}\:{A}\left({x}\right)\:=\left(\frac{{x}−\mathrm{1}}{{x}}\right)^{{x}} \:\Rightarrow{A}\left({x}\right)=\left(\mathrm{1}−\frac{\mathrm{1}}{{x}}\right)^{{x}} \:\:\:\Rightarrow{for}\:{x}>\mathrm{0}\: \\ $$$${ln}\left({A}\left({x}\right)\right)\:={xln}\left(\mathrm{1}−\frac{\mathrm{1}}{{x}}\right)\:\:\:{but}\:{we}\:{have}\:{ln}^{'} \left(\mathrm{1}−{u}\right)\:=−\frac{\mathrm{1}}{\mathrm{1}−{u}}\:=−\left(\mathrm{1}+{u}\:+{o}\left({u}^{\mathrm{2}} \right)\right)\:\Rightarrow \\ $$$${ln}\left(\mathrm{1}−{u}\right)\:=−{u}−\frac{{u}^{\mathrm{2}} }{\mathrm{2}}\:+{o}\left({u}^{\mathrm{3}} \right)\:\Rightarrow{ln}\left(\mathrm{1}−\frac{\mathrm{1}}{{x}}\right)=−\frac{\mathrm{1}}{{x}}\:−\frac{\mathrm{1}}{\mathrm{2}{x}^{\mathrm{2}} }\:+{o}\left(\frac{\mathrm{1}}{{x}^{\mathrm{3}} }\right)\:\left({x}\rightarrow+\infty\right)\:\Rightarrow \\ $$$${xln}\left(\mathrm{1}−\frac{\mathrm{1}}{{x}}\right)=−\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}{x}}\:+{o}\left(\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)\:\Rightarrow{lim}_{{x}\rightarrow+\infty} {xln}\left(\mathrm{1}−\frac{\mathrm{1}}{{x}}\right)=−\mathrm{1}\:\Rightarrow \\ $$$${lim}_{{x}\rightarrow+\infty} \:{ln}\left({A}\left({x}\right)\right)=−\mathrm{1}\:\Rightarrow\:{lim}_{{x}\rightarrow+\infty} \:{A}\left({x}\right)\:={e}^{−\mathrm{1}} \:=\frac{\mathrm{1}}{{e}} \\ $$$$ \\ $$

Answered by tanmay last updated on 23/Apr/19

another way  t=(1/x)  lim_(t→0)  (1−t)^(1/t)   y=lim_(t→0)  (1−t)^(1/t)   lny=lim_(t→0)  ((ln(1−t))/(−t))×−1  lny=−1  y=e^(−1) =(1/e)

$${another}\:{way} \\ $$$${t}=\frac{\mathrm{1}}{{x}} \\ $$$$\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\mathrm{1}−{t}\right)^{\frac{\mathrm{1}}{{t}}} \\ $$$${y}=\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\mathrm{1}−{t}\right)^{\frac{\mathrm{1}}{{t}}} \\ $$$${lny}=\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{ln}\left(\mathrm{1}−{t}\right)}{−{t}}×−\mathrm{1} \\ $$$${lny}=−\mathrm{1} \\ $$$${y}={e}^{−\mathrm{1}} =\frac{\mathrm{1}}{{e}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com