Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 58530 by maxmathsup by imad last updated on 24/Apr/19

find lim_(x→0)   ((1−cos(2x) cos(3x^3 ))/x^2 )

$${find}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\frac{\mathrm{1}−{cos}\left(\mathrm{2}{x}\right)\:{cos}\left(\mathrm{3}{x}^{\mathrm{3}} \right)}{{x}^{\mathrm{2}} } \\ $$

Answered by tanmay last updated on 24/Apr/19

cos2x=1−(((2x)^2 )/(2!))+others term ignored because  those terms contain x^r   when r>2  cos(3x^3 )=1−(((3x^3 )^2 )/(2!))+others terms ignored  lim_(x→0)  ((1−{(1−((4x^2 )/2))(1−((9x^6 )/2))})/x^2 )  =lim_(x→0)  ((1−(1−((9x^6 )/2)−2x^2 +9x^8 ))/x^2 )  =lim_(x→0)  ((1−1+2x^2 +others terms ignored)/x^2 )  =2

$${cos}\mathrm{2}{x}=\mathrm{1}−\frac{\left(\mathrm{2}{x}\right)^{\mathrm{2}} }{\mathrm{2}!}+{others}\:{term}\:{ignored}\:{because} \\ $$$${those}\:{terms}\:{contain}\:{x}^{{r}} \:\:{when}\:{r}>\mathrm{2} \\ $$$${cos}\left(\mathrm{3}{x}^{\mathrm{3}} \right)=\mathrm{1}−\frac{\left(\mathrm{3}{x}^{\mathrm{3}} \right)^{\mathrm{2}} }{\mathrm{2}!}+{others}\:{terms}\:{ignored} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}−\left\{\left(\mathrm{1}−\frac{\mathrm{4}{x}^{\mathrm{2}} }{\mathrm{2}}\right)\left(\mathrm{1}−\frac{\mathrm{9}{x}^{\mathrm{6}} }{\mathrm{2}}\right)\right\}}{{x}^{\mathrm{2}} } \\ $$$$=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}−\left(\mathrm{1}−\frac{\mathrm{9}{x}^{\mathrm{6}} }{\mathrm{2}}−\mathrm{2}{x}^{\mathrm{2}} +\mathrm{9}{x}^{\mathrm{8}} \right)}{{x}^{\mathrm{2}} } \\ $$$$=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}−\mathrm{1}+\mathrm{2}{x}^{\mathrm{2}} +{others}\:{terms}\:{ignored}}{{x}^{\mathrm{2}} } \\ $$$$=\mathrm{2} \\ $$

Commented by malwaan last updated on 25/Apr/19

method name?  please sir !

$${method}\:{name}? \\ $$$${please}\:{sir}\:! \\ $$

Commented by tanmay last updated on 25/Apr/19

we know that cosθ=1−(θ^2 /(2!))+(θ^4 /(4!))−(θ^6 /(6!))+...∞  i have just put the value of cosθ in expansion form

$${we}\:{know}\:{that}\:{cos}\theta=\mathrm{1}−\frac{\theta^{\mathrm{2}} }{\mathrm{2}!}+\frac{\theta^{\mathrm{4}} }{\mathrm{4}!}−\frac{\theta^{\mathrm{6}} }{\mathrm{6}!}+...\infty \\ $$$${i}\:{have}\:{just}\:{put}\:{the}\:{value}\:{of}\:{cos}\theta\:{in}\:{expansion}\:{form} \\ $$

Commented by maxmathsup by imad last updated on 25/Apr/19

limited developpement or taylor series .

$${limited}\:{developpement}\:{or}\:{taylor}\:{series}\:. \\ $$

Commented by malwaan last updated on 27/Apr/19

thank you

$${thank}\:{you} \\ $$

Answered by kaivan.ahmadi last updated on 25/Apr/19

lim_(x→0) ((1−(1/2)(cos(2x+3x^3 )+cos(2x−3x^3 )))/x^2 )=  lim_(x→0) (((1−cos(2x+3x^3 ))+(1−cos(2x−3x^3 )))/(2x^2 ))∼  lim_(x→0) (((2x+3x^3 )^2 +(2x−3x^3 )^2 )/(4x^2 ))=  lim_(x→0) ((8x^2 +18x^6 )/(4x^2 ))=lim_(x→0) ((8+18x^4 )/4)=(8/4)=2

$${lim}_{{x}\rightarrow\mathrm{0}} \frac{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}\left({cos}\left(\mathrm{2}{x}+\mathrm{3}{x}^{\mathrm{3}} \right)+{cos}\left(\mathrm{2}{x}−\mathrm{3}{x}^{\mathrm{3}} \right)\right)}{{x}^{\mathrm{2}} }= \\ $$$${lim}_{{x}\rightarrow\mathrm{0}} \frac{\left(\mathrm{1}−{cos}\left(\mathrm{2}{x}+\mathrm{3}{x}^{\mathrm{3}} \right)\right)+\left(\mathrm{1}−{cos}\left(\mathrm{2}{x}−\mathrm{3}{x}^{\mathrm{3}} \right)\right)}{\mathrm{2}{x}^{\mathrm{2}} }\sim \\ $$$${lim}_{{x}\rightarrow\mathrm{0}} \frac{\left(\mathrm{2}{x}+\mathrm{3}{x}^{\mathrm{3}} \right)^{\mathrm{2}} +\left(\mathrm{2}{x}−\mathrm{3}{x}^{\mathrm{3}} \right)^{\mathrm{2}} }{\mathrm{4}{x}^{\mathrm{2}} }= \\ $$$${lim}_{{x}\rightarrow\mathrm{0}} \frac{\mathrm{8}{x}^{\mathrm{2}} +\mathrm{18}{x}^{\mathrm{6}} }{\mathrm{4}{x}^{\mathrm{2}} }={lim}_{{x}\rightarrow\mathrm{0}} \frac{\mathrm{8}+\mathrm{18}{x}^{\mathrm{4}} }{\mathrm{4}}=\frac{\mathrm{8}}{\mathrm{4}}=\mathrm{2} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com