Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 5855 by sanusihammed last updated on 01/Jun/16

If   xy^(3 )  =  sin(xy)    find    (d^2 y/dx^2 )    Please i need help. thanks for your effort

Ifxy3=sin(xy)findd2ydx2Pleaseineedhelp.thanksforyoureffort

Answered by 123456 last updated on 02/Jun/16

xy^3 =sin(xy)  ((d(xy^3 ))/dx)=((d[sin(xy)])/dx)  (dx/dx)y^3 +x((d(y^3 ))/dx)=((d[sin(xy)])/(d(xy)))∙((d(xy))/dx)  y^3 +x((d(y^3 ))/dy)∙(dy/dx)=cos(xy)∙((dx/dx)y+x(dy/dx))  y^3 +3xy^2 (dy/dx)=cos(xy)(y+x(dy/dx))  y^3 +3xy^2 (dy/dx)=cos(xy)y+cos(xy)x(dy/dx)  [3xy^2 −cos(xy)x](dy/dx)=cos(xy)y−y^3   (dy/dx)=((cos(xy)y−y^3 )/(3xy^2 −cos(xy)x))  continue

xy3=sin(xy)d(xy3)dx=d[sin(xy)]dxdxdxy3+xd(y3)dx=d[sin(xy)]d(xy)d(xy)dxy3+xd(y3)dydydx=cos(xy)(dxdxy+xdydx)y3+3xy2dydx=cos(xy)(y+xdydx)y3+3xy2dydx=cos(xy)y+cos(xy)xdydx[3xy2cos(xy)x]dydx=cos(xy)yy3dydx=cos(xy)yy33xy2cos(xy)xcontinue

Commented by sanusihammed last updated on 02/Jun/16

It is the (d^2 y/(dx^2  )) that i really need

Itisthed2ydx2thatireallyneed

Answered by Yozzii last updated on 02/Jun/16

xy^3 =sin(xy)  Implicit differentiation⇒y^3 +3xy^2 y′=(xy′+y)cos(xy)⇒y′=((y^3 −ycos(xy))/(x(cos(xy)−3y^2 )))=((y(y^2 −cos(xy)))/(x(cos(xy)−3y^2 )))  Implicit differentiation again⇒3y^2 y^′ +3xy^2 y′′+(3y^2 +6xyy^′ )y^′   =(xy′′+y′+y′)cos(xy)−(xy′+y)^2 sin(xy)  3xy^2 y′′+6yy′(y+xy′)=xy′′cos(xy)+2y′cos(xy)−(xy′+y)^2 sin(xy)  x(3y^2 −cos(xy))y′′=y′(2cos(xy)−6y(y+xy′))−(xy′+y)^2 sin(xy)  y′′=((y′(2cos(xy)−6y(y+xy′))−xy^3 (xy′+y)^2 )/(x(3y^2 −cos(xy))))  Let u=x(3y^2 −cos(xy)),v=y(y^2 −cos(xy))  ∴y′=(v/u)    y′′=(((v/u)(2cos(xy)−6y(y+x(v/u)))−xy^3 (((xv)/u)+y)^2 )/u)  y′′=((v(2ucos(xy)−6y(yu+xv))−xy^3 (xv+yu)^2 )/u^3 )  y′′=((2vucos(xy)−6yv(yu+xv)−xy^3 (xv+yu)^2 )/u^3 )  xv+yu=xy(y^2 −cos(xy))+yx(3y^2 −cos(xy))  xv+yu=2xy(2y^2 −cos(xy))    y′′=((2y(y^2 −cos(xy))(3y^2 −cos(xy))cos(xy)−12y^3 (2y^2 −cos(xy))(y^2 −cos(xy))−4x^2 y^5 (2y^2 −cos(xy))^2 )/(x^2 (3y^2 −cos(xy))^3 ))

xy3=sin(xy)Implicitdifferentiationy3+3xy2y=(xy+y)cos(xy)y=y3ycos(xy)x(cos(xy)3y2)=y(y2cos(xy))x(cos(xy)3y2)Implicitdifferentiationagain3y2y+3xy2y+(3y2+6xyy)y=(xy+y+y)cos(xy)(xy+y)2sin(xy)3xy2y+6yy(y+xy)=xycos(xy)+2ycos(xy)(xy+y)2sin(xy)x(3y2cos(xy))y=y(2cos(xy)6y(y+xy))(xy+y)2sin(xy)y=y(2cos(xy)6y(y+xy))xy3(xy+y)2x(3y2cos(xy))Letu=x(3y2cos(xy)),v=y(y2cos(xy))y=vuy=vu(2cos(xy)6y(y+xvu))xy3(xvu+y)2uy=v(2ucos(xy)6y(yu+xv))xy3(xv+yu)2u3y=2vucos(xy)6yv(yu+xv)xy3(xv+yu)2u3xv+yu=xy(y2cos(xy))+yx(3y2cos(xy))xv+yu=2xy(2y2cos(xy))y=2y(y2cos(xy))(3y2cos(xy))cos(xy)12y3(2y2cos(xy))(y2cos(xy))4x2y5(2y2cos(xy))2x2(3y2cos(xy))3

Commented by sanusihammed last updated on 02/Jun/16

Thanks so much

Thankssomuch

Terms of Service

Privacy Policy

Contact: info@tinkutara.com