Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 58595 by rahul 19 last updated on 25/Apr/19

Answered by tanmay last updated on 26/Apr/19

a=x^2 →da=2xdx  xdx=(da/2)  ∫_0 ^(100) {a}×(da/2)→I_2   I_2 =(1/2)∫_0 ^(100) {a}da  let value of ∫_0 ^(100) {a}da=k  so I_2 =(k/2)  ∫_0 ^(10^4 ) (({(√x) })/(√x))dx  b=(√x)   db=(1/(2(√x)))dx  ∫_0 ^(100) 2{b}db→2k  I_1 =2k  (I_1 /I_2 )=((2k)/(k/2))=4  so I_1 =4I_2

$${a}={x}^{\mathrm{2}} \rightarrow{da}=\mathrm{2}{xdx} \\ $$$${xdx}=\frac{{da}}{\mathrm{2}} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{100}} \left\{{a}\right\}×\frac{{da}}{\mathrm{2}}\rightarrow{I}_{\mathrm{2}} \\ $$$${I}_{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{100}} \left\{{a}\right\}{da} \\ $$$${let}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\mathrm{100}} \left\{{a}\right\}{da}={k} \\ $$$${so}\:{I}_{\mathrm{2}} =\frac{{k}}{\mathrm{2}} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{10}^{\mathrm{4}} } \frac{\left\{\sqrt{{x}}\:\right\}}{\sqrt{{x}}}{dx} \\ $$$${b}=\sqrt{{x}}\: \\ $$$${db}=\frac{\mathrm{1}}{\mathrm{2}\sqrt{{x}}}{dx} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{100}} \mathrm{2}\left\{{b}\right\}{db}\rightarrow\mathrm{2}{k} \\ $$$${I}_{\mathrm{1}} =\mathrm{2}{k} \\ $$$$\frac{{I}_{\mathrm{1}} }{{I}_{\mathrm{2}} }=\frac{\mathrm{2}{k}}{\frac{{k}}{\mathrm{2}}}=\mathrm{4} \\ $$$$\boldsymbol{{so}}\:\boldsymbol{{I}}_{\mathrm{1}} =\mathrm{4}{I}_{\mathrm{2}} \\ $$

Commented by rahul 19 last updated on 26/Apr/19

Sir, when b=(√x) then lower limit should  become 1 i.e I_1 ≠2k ,right?  Correct Ans: C,D.

$${Sir},\:{when}\:{b}=\sqrt{{x}}\:{then}\:{lower}\:{limit}\:{should} \\ $$$${become}\:\mathrm{1}\:{i}.{e}\:{I}_{\mathrm{1}} \neq\mathrm{2}{k}\:,{right}? \\ $$$${Correct}\:{Ans}:\:{C},{D}. \\ $$

Commented by tanmay last updated on 26/Apr/19

lower limit of I_1 =1  but i considered it 0 by mistake  when i introduced a and b in place of x^2  and (√x)    I_1  and I_2  converted to same pattern...  so it is my mistake...  (1/2)∫_0 ^(100) {a}da  =(1/2)∫_0 ^(100) a−[a]  da  =(1/2)∫_0 ^(100) ada−(1/2)[∫_0 ^1 [a]da+∫_1 ^2 [a]da+...∫_(99) ^(100) [a]da  =(1/2)×∣(a^2 /2)∣_0 ^(100) −(1/2)[∫_0 ^1 0da+∫_1 ^2 1×da+∫_2 ^3 2da+..∫_(99) ^(100) 99da]  =(1/2)×((100×100)/2)−(1/2)[0+1+2+..+99]  =2500−(1/2)×((99)/2)[2×1+(99−1)×1]  =2500−((99)/4)×100  =25(100−99)=25    ∫_1 ^(100) {b}db  =∫_1 ^(100) bdb−[∫_1 ^2 1×db+∫_2 ^3 2×db+...+∫_(99) ^(100) 99×db]  =((100^2 −1^2 )/2)−[1+2+3+..+99]  =((101×99)/2)−((99)/2)[2×1+(99−1)×1]  =((101×99)/2)−((99×100)/2)  =((99)/2)  pls check

$${lower}\:{limit}\:{of}\:{I}_{\mathrm{1}} =\mathrm{1}\:\:{but}\:{i}\:{considered}\:{it}\:\mathrm{0}\:{by}\:{mistake} \\ $$$${when}\:{i}\:{introduced}\:{a}\:{and}\:{b}\:{in}\:{place}\:{of}\:{x}^{\mathrm{2}} \:{and}\:\sqrt{{x}}\: \\ $$$$\:{I}_{\mathrm{1}} \:{and}\:{I}_{\mathrm{2}} \:{converted}\:{to}\:{same}\:{pattern}... \\ $$$${so}\:{it}\:{is}\:{my}\:{mistake}... \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{100}} \left\{{a}\right\}{da} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{100}} {a}−\left[{a}\right]\:\:{da} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{100}} {ada}−\frac{\mathrm{1}}{\mathrm{2}}\left[\int_{\mathrm{0}} ^{\mathrm{1}} \left[{a}\right]{da}+\int_{\mathrm{1}} ^{\mathrm{2}} \left[{a}\right]{da}+...\int_{\mathrm{99}} ^{\mathrm{100}} \left[{a}\right]{da}\right. \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}×\mid\frac{{a}^{\mathrm{2}} }{\mathrm{2}}\mid_{\mathrm{0}} ^{\mathrm{100}} −\frac{\mathrm{1}}{\mathrm{2}}\left[\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{0}{da}+\int_{\mathrm{1}} ^{\mathrm{2}} \mathrm{1}×{da}+\int_{\mathrm{2}} ^{\mathrm{3}} \mathrm{2}{da}+..\int_{\mathrm{99}} ^{\mathrm{100}} \mathrm{99}{da}\right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}×\frac{\mathrm{100}×\mathrm{100}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}\left[\mathrm{0}+\mathrm{1}+\mathrm{2}+..+\mathrm{99}\right] \\ $$$$=\mathrm{2500}−\frac{\mathrm{1}}{\mathrm{2}}×\frac{\mathrm{99}}{\mathrm{2}}\left[\mathrm{2}×\mathrm{1}+\left(\mathrm{99}−\mathrm{1}\right)×\mathrm{1}\right] \\ $$$$=\mathrm{2500}−\frac{\mathrm{99}}{\mathrm{4}}×\mathrm{100} \\ $$$$=\mathrm{25}\left(\mathrm{100}−\mathrm{99}\right)=\mathrm{25} \\ $$$$ \\ $$$$\int_{\mathrm{1}} ^{\mathrm{100}} \left\{{b}\right\}{db} \\ $$$$=\int_{\mathrm{1}} ^{\mathrm{100}} {bdb}−\left[\int_{\mathrm{1}} ^{\mathrm{2}} \mathrm{1}×{db}+\int_{\mathrm{2}} ^{\mathrm{3}} \mathrm{2}×{db}+...+\int_{\mathrm{99}} ^{\mathrm{100}} \mathrm{99}×{db}\right] \\ $$$$=\frac{\mathrm{100}^{\mathrm{2}} −\mathrm{1}^{\mathrm{2}} }{\mathrm{2}}−\left[\mathrm{1}+\mathrm{2}+\mathrm{3}+..+\mathrm{99}\right] \\ $$$$=\frac{\mathrm{101}×\mathrm{99}}{\mathrm{2}}−\frac{\mathrm{99}}{\mathrm{2}}\left[\mathrm{2}×\mathrm{1}+\left(\mathrm{99}−\mathrm{1}\right)×\mathrm{1}\right] \\ $$$$=\frac{\mathrm{101}×\mathrm{99}}{\mathrm{2}}−\frac{\mathrm{99}×\mathrm{100}}{\mathrm{2}} \\ $$$$=\frac{\mathrm{99}}{\mathrm{2}} \\ $$$${pls}\:{check} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Commented by rahul 19 last updated on 26/Apr/19

Sir, i′m getting I_1 = 99 .  Edit: you are  also getting I_1 =99...  (Since integration is 2×∫_1 ^(100) {b}db.)  That means none of the option matches.  So are we doing wrong?

$${Sir},\:{i}'{m}\:{getting}\:{I}_{\mathrm{1}} =\:\mathrm{99}\:. \\ $$$${Edit}:\:{you}\:{are}\:\:{also}\:{getting}\:{I}_{\mathrm{1}} =\mathrm{99}... \\ $$$$\left({Since}\:{integration}\:{is}\:\mathrm{2}×\int_{\mathrm{1}} ^{\mathrm{100}} \left\{{b}\right\}{db}.\right) \\ $$$${That}\:{means}\:{none}\:{of}\:{the}\:{option}\:{matches}. \\ $$$${So}\:{are}\:{we}\:{doing}\:{wrong}?\: \\ $$

Commented by tanmay last updated on 26/Apr/19

i think no ...we are correct...option may be wrong  let us use app to find the exact solution

$${i}\:{think}\:{no}\:...{we}\:{are}\:{correct}...{option}\:{may}\:{be}\:{wrong} \\ $$$${let}\:{us}\:{use}\:{app}\:{to}\:{find}\:{the}\:{exact}\:{solution} \\ $$

Commented by rahul 19 last updated on 26/Apr/19

thank U sir.

$${thank}\:{U}\:{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com