All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 58639 by rahul 19 last updated on 26/Apr/19
Answered by tanmay last updated on 27/Apr/19
F(x)=∫0xtf(t)dtdFdx=∫0x∂∂x(tf(t)dt+xf(x)dxdx−0×f(0)×d0dxdFdx=xf(x)F(x2)=x4+x5=x4(1+x)=(x2)2(1+x2)F(x)=x2(1+x)=x2+x52dFdx=2x+52x322x+52x32=xf(x)f(x)=2+52xa)f(4)=2+52×4=7b)f(x)=2+52xcontinousfunction[x>0]c)f(x)=2+52xdfdx=52×12x=54xwhenx>0dfdx>0soincreasinggunction
Commented by rahul 19 last updated on 27/Apr/19
thankssir!
Terms of Service
Privacy Policy
Contact: info@tinkutara.com