Question and Answers Forum

All Questions      Topic List

Vector Calculus Questions

Previous in All Question      Next in All Question      

Previous in Vector Calculus      Next in Vector Calculus      

Question Number 58698 by arnabmaiti550@gmail.com last updated on 28/Apr/19

▽^→ ∙((e^(br) /r^2 ) e_r ^∧ )=?    b is a constant.

$$\overset{\rightarrow} {\bigtriangledown}\centerdot\left(\frac{{e}^{{br}} }{{r}^{\mathrm{2}} }\:\overset{\wedge} {{e}}_{{r}} \right)=?\:\:\:\:{b}\:{is}\:{a}\:{constant}. \\ $$

Commented by tanmay last updated on 28/Apr/19

pls mention co−ordinate system  1) csrtesian 3d   2)polar (r,θ)  3)sperical(r,θ,φ)  4)cylindrical

$${pls}\:{mention}\:{co}−{ordinate}\:{system} \\ $$$$\left.\mathrm{1}\right)\:{csrtesian}\:\mathrm{3}{d}\: \\ $$$$\left.\mathrm{2}\right){polar}\:\left({r},\theta\right) \\ $$$$\left.\mathrm{3}\right){sperical}\left({r},\theta,\phi\right) \\ $$$$\left.\mathrm{4}\right){cylindrical} \\ $$

Commented by arnabmaiti550@gmail.com last updated on 28/Apr/19

spherical coordinate system

$$\mathrm{spherical}\:\mathrm{coordinate}\:\mathrm{system} \\ $$

Commented by tanmay last updated on 28/Apr/19

ok...let me try to solve...

$${ok}...{let}\:{me}\:{try}\:{to}\:{solve}... \\ $$

Commented by tanmay last updated on 28/Apr/19

Answered by tanmay last updated on 28/Apr/19

if it is in spherical coordinate  then ▽^→ .A^→ =(1/r^2 )(∂/∂r)(r^2 A_r )  =(1/r^2 )(∂/∂r)(r^2 ×(e^(br) /r^2 )×e_r ^Λ )  =(1/r^2 )×(∂/∂r)(e^(br)  e_r ^Λ )  =(1/r^2 ){e_r ^Λ ((∂(e^(br) ))/∂r)+e^(br) ((∂(e_r ^Λ ))/∂r)}  =(1/r^2 ){e_r ^Λ ×e^(br) ×b+e^(br) ×(∂e_r ^Λ /∂r)}  i am not sure is it correct or not...  but i think question is in polar coirdinate  system

$${if}\:{it}\:{is}\:{in}\:{spherical}\:{coordinate} \\ $$$${then}\:\overset{\rightarrow} {\bigtriangledown}.\overset{\rightarrow} {{A}}=\frac{\mathrm{1}}{{r}^{\mathrm{2}} }\frac{\partial}{\partial{r}}\left({r}^{\mathrm{2}} {A}_{{r}} \right) \\ $$$$=\frac{\mathrm{1}}{{r}^{\mathrm{2}} }\frac{\partial}{\partial{r}}\left({r}^{\mathrm{2}} ×\frac{{e}^{{br}} }{{r}^{\mathrm{2}} }×\overset{\Lambda} {{e}}_{{r}} \right) \\ $$$$=\frac{\mathrm{1}}{{r}^{\mathrm{2}} }×\frac{\partial}{\partial{r}}\left({e}^{{br}} \:\overset{\Lambda} {{e}}_{{r}} \right) \\ $$$$=\frac{\mathrm{1}}{{r}^{\mathrm{2}} }\left\{\overset{\Lambda} {{e}}_{{r}} \frac{\partial\left({e}^{{br}} \right)}{\partial{r}}+{e}^{{br}} \frac{\partial\left(\overset{\Lambda} {{e}}_{{r}} \right)}{\partial{r}}\right\} \\ $$$$=\frac{\mathrm{1}}{{r}^{\mathrm{2}} }\left\{\overset{\Lambda} {{e}}_{{r}} ×{e}^{{br}} ×{b}+{e}^{{br}} ×\frac{\partial\overset{\Lambda} {{e}}_{{r}} }{\partial{r}}\right\} \\ $$$${i}\:{am}\:{not}\:{sure}\:{is}\:{it}\:{correct}\:{or}\:{not}... \\ $$$$\boldsymbol{{but}}\:\boldsymbol{{i}}\:\boldsymbol{{think}}\:\boldsymbol{{question}}\:\boldsymbol{{is}}\:\boldsymbol{{in}}\:\boldsymbol{{polar}}\:\boldsymbol{{coirdinate}} \\ $$$$\boldsymbol{{system}} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com