Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 5874 by sanusihammed last updated on 02/Jun/16

Prove the identity.   cosh^(−1) (x) = sinh^(−1) ((1/x))    please help.

$${Prove}\:{the}\:{identity}.\: \\ $$$${cosh}^{−\mathrm{1}} \left({x}\right)\:=\:{sinh}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{{x}}\right) \\ $$$$ \\ $$$${please}\:{help}. \\ $$

Answered by Yozzii last updated on 02/Jun/16

sinh^(−1) u=ln(u+(√(u^2 +1)))  (u∈R)  Let u=(1/x)      (x≠0).  ⇒sinh^(−1) x^(−1) =ln((1/x)+(1/(∣x∣))(√(1+x^2 )))  Let x>0.⇒∣x∣=x.  ⇒sinh^(−1) x^(−1) =ln(((1+(√(1+x^2 )))/x))    coshy=x  e^y +e^(−y) =2x  e^(2y) −2xe^y +1=0  e^y =((2x±(√(4x^2 −4)))/2)  e^y =x±(√(x^2 −1))  y=ln(x±(√(x^2 −1)))  cosh^(−1) x=ln(x±(√(x^2 −1)))  x≥1.  Let x=1⇒cosh^(−1) 1=ln(1±0)=0  But sinh^(−1) 1=ln(((1+(√2))/1))≠0=cosh^(−1) 1

$${sinh}^{−\mathrm{1}} {u}={ln}\left({u}+\sqrt{{u}^{\mathrm{2}} +\mathrm{1}}\right)\:\:\left({u}\in\mathbb{R}\right) \\ $$$${Let}\:{u}=\frac{\mathrm{1}}{{x}}\:\:\:\:\:\:\left({x}\neq\mathrm{0}\right). \\ $$$$\Rightarrow{sinh}^{−\mathrm{1}} {x}^{−\mathrm{1}} ={ln}\left(\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{\mid{x}\mid}\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\right) \\ $$$${Let}\:{x}>\mathrm{0}.\Rightarrow\mid{x}\mid={x}. \\ $$$$\Rightarrow{sinh}^{−\mathrm{1}} {x}^{−\mathrm{1}} ={ln}\left(\frac{\mathrm{1}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}{{x}}\right) \\ $$$$ \\ $$$${coshy}={x} \\ $$$${e}^{{y}} +{e}^{−{y}} =\mathrm{2}{x} \\ $$$${e}^{\mathrm{2}{y}} −\mathrm{2}{xe}^{{y}} +\mathrm{1}=\mathrm{0} \\ $$$${e}^{{y}} =\frac{\mathrm{2}{x}\pm\sqrt{\mathrm{4}{x}^{\mathrm{2}} −\mathrm{4}}}{\mathrm{2}} \\ $$$${e}^{{y}} ={x}\pm\sqrt{{x}^{\mathrm{2}} −\mathrm{1}} \\ $$$${y}={ln}\left({x}\pm\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}\right) \\ $$$${cosh}^{−\mathrm{1}} {x}={ln}\left({x}\pm\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}\right)\:\:{x}\geqslant\mathrm{1}. \\ $$$${Let}\:{x}=\mathrm{1}\Rightarrow{cosh}^{−\mathrm{1}} \mathrm{1}={ln}\left(\mathrm{1}\pm\mathrm{0}\right)=\mathrm{0} \\ $$$${But}\:{sinh}^{−\mathrm{1}} \mathrm{1}={ln}\left(\frac{\mathrm{1}+\sqrt{\mathrm{2}}}{\mathrm{1}}\right)\neq\mathrm{0}={cosh}^{−\mathrm{1}} \mathrm{1} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com