Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 58753 by maxmathsup by imad last updated on 29/Apr/19

find lim_(x→0)  ((1−cos(x)cos(x^2 )....cos(x^n ))/x^n )   with n natural integr ≥2

$${find}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\frac{\mathrm{1}−{cos}\left({x}\right){cos}\left({x}^{\mathrm{2}} \right)....{cos}\left({x}^{{n}} \right)}{{x}^{{n}} }\:\:\:{with}\:{n}\:{natural}\:{integr}\:\geqslant\mathrm{2} \\ $$

Commented by tanmay last updated on 30/Apr/19

sir pls solve it...

$${sir}\:{pls}\:{solve}\:{it}... \\ $$

Answered by Smail last updated on 30/Apr/19

Undefined  let  f(x)=cos(x)cos(x^2 )cos(x^3 )...cos(x^n )  f(x)∼_0 (Σ_(i=0) ^([(n/2)]) (x^(2i) /((2i)!)))(Σ_(i=0) ^([(n/4)]) (x^(4i) /((2i)!)))...Σ_(i=0) ^1 (x^(2ni) /((2i)!))  =1+a_1 x^2 +a_2 x^4 +a_3 x^6 +...+a_([n/2]) x^n +....+a_n x^(2n)   ((1−f(x))/x^n )=−(a_1 /x^(n−2) )−(a_2 /x^(n−4) )−....−a_([n/2[) −...  lim_(x→0) ((1−f(x))/x^n )=lim_(x→0) (−(a_1 /x^(n−2) )−(a_2 /x^(n−4) )−...)  =+_− ∞=Undefined

$${Undefined} \\ $$$${let}\:\:{f}\left({x}\right)={cos}\left({x}\right){cos}\left({x}^{\mathrm{2}} \right){cos}\left({x}^{\mathrm{3}} \right)...{cos}\left({x}^{{n}} \right) \\ $$$${f}\left({x}\right)\underset{\mathrm{0}} {\sim}\left(\underset{{i}=\mathrm{0}} {\overset{\left[\frac{{n}}{\mathrm{2}}\right]} {\sum}}\frac{{x}^{\mathrm{2}{i}} }{\left(\mathrm{2}{i}\right)!}\right)\left(\underset{{i}=\mathrm{0}} {\overset{\left[\frac{{n}}{\mathrm{4}}\right]} {\sum}}\frac{{x}^{\mathrm{4}{i}} }{\left(\mathrm{2}{i}\right)!}\right)...\underset{{i}=\mathrm{0}} {\overset{\mathrm{1}} {\sum}}\frac{{x}^{\mathrm{2}{ni}} }{\left(\mathrm{2}{i}\right)!} \\ $$$$=\mathrm{1}+{a}_{\mathrm{1}} {x}^{\mathrm{2}} +{a}_{\mathrm{2}} {x}^{\mathrm{4}} +{a}_{\mathrm{3}} {x}^{\mathrm{6}} +...+{a}_{\left[{n}/\mathrm{2}\right]} {x}^{{n}} +....+{a}_{{n}} {x}^{\mathrm{2}{n}} \\ $$$$\frac{\mathrm{1}−{f}\left({x}\right)}{{x}^{{n}} }=−\frac{{a}_{\mathrm{1}} }{{x}^{{n}−\mathrm{2}} }−\frac{{a}_{\mathrm{2}} }{{x}^{{n}−\mathrm{4}} }−....−{a}_{\left[{n}/\mathrm{2}\left[\right.\right.} −... \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {{lim}}\frac{\mathrm{1}−{f}\left({x}\right)}{{x}^{{n}} }=\underset{{x}\rightarrow\mathrm{0}} {{lim}}\left(−\frac{{a}_{\mathrm{1}} }{{x}^{{n}−\mathrm{2}} }−\frac{{a}_{\mathrm{2}} }{{x}^{{n}−\mathrm{4}} }−...\right) \\ $$$$=\underset{−} {+}\infty={Undefined} \\ $$$$ \\ $$

Commented by maxmathsup by imad last updated on 01/May/19

but hospital theorem talk that tbe limit is defined...!

$${but}\:{hospital}\:{theorem}\:{talk}\:{that}\:{tbe}\:{limit}\:{is}\:{defined}...! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com