Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 58770 by Mr X pcx last updated on 29/Apr/19

find the value of integrals   I =∫_0 ^∞     (dx/((x^2 +1)^3 ))   , J =∫_0 ^∞    (dx/((x^2  +1)^5 ))

findthevalueofintegralsI=0dx(x2+1)3,J=0dx(x2+1)5

Commented by maxmathsup by imad last updated on 15/May/19

method of residus we have 2I =∫_(−∞) ^(+∞)   (dx/((x^2  +1)^3 ))  let f(z) =(1/((z^2  +1)^3 ))  =(1/((z−i)^3 (z+i)^3 ))  so the poles of f are +^− i  (triples) residus theorem give  ∫_(−∞) ^(+∞)  f(z)dz =2iπ Res(f,i)  Res(f,i) =lim_(z→i)   (1/((3−1)!)){ (z−i)^3 f(z)}^((2))   =lim_(z→i)   (1/2){ (1/((z+i)^3 ))}^((2))  =lim_(z→i) (1/2){((−3(z+i)^2 )/((z+i)^6 ))}^((1))   =lim_(z→i)  ((−3)/2){ (1/((z+i)^4 ))}^((1))  =lim_(z→i) ((−3)/2){((−4(z+i)^3 )/((z+i)^8 ))}  =lim_(z→i)   (6/((z+i)^5 ))  =(6/((2i)^5 )) =(6/(2^5 i)) ⇒∫_(−∞) ^(+∞)  f(z)dz =2iπ(6/(2^5 i)) =((6π)/2^4 ) =((6π)/(16)) =((3π)/8) ⇒  I =((3π)/(16)) .

methodofresiduswehave2I=+dx(x2+1)3letf(z)=1(z2+1)3=1(zi)3(z+i)3sothepolesoffare+i(triples)residustheoremgive+f(z)dz=2iπRes(f,i)Res(f,i)=limzi1(31)!{(zi)3f(z)}(2)=limzi12{1(z+i)3}(2)=limzi12{3(z+i)2(z+i)6}(1)=limzi32{1(z+i)4}(1)=limzi32{4(z+i)3(z+i)8}=limzi6(z+i)5=6(2i)5=625i+f(z)dz=2iπ625i=6π24=6π16=3π8I=3π16.

Answered by tanmay last updated on 30/Apr/19

I=∫_0 ^∞ (dx/((x^2 +1)^3 ))  x=tana dx=sec^2 ada  ∫_0 ^(π/2) ((sec^2 ada)/(sec^6 a))  ∫_0 ^(π/2) cos^4 ada  ∫_0 ^(π/2) (sina)^(2×(1/2)−1) ×(cosa)^(2×(5/2)−1) da  =((⌈((1/2))⌈((5/2)))/(2⌈((1/2)+(5/2))))  now ⌈((1/2))=(√π)   ⌈((5/2))=⌈((3/2)+1)  =(3/2)⌈((3/2))  =(3/2)×⌈((1/2)+1)  =(3/2)×(1/2)×(√π)   ⌈((1/2)+(5/2))  =⌈(2+1)  =2⌈(1+1)  =2×1  =2  so answer is =(((√π) ×(3/4)×(√π) )/(2×2))=(3/(16))π  J=∫_0 ^∞ (dx/((x^2 +1)^5 ))  =∫_0 ^(π/2) ((sec^2 ada)/(sec^(10) a))  =∫_0 ^(π/2) cos^8 ada  =∫_0 ^(π/2) (sina)^(2×(1/2)−1) (cosa)^(2×(9/2)−1) da  =((⌈((1/2))⌈((9/2)))/(2⌈(((1+9)/2))))  =(((√π) ×(7/2)×(5/2)×(3/2)×(1/2)×(√π))/(2×4×3×2))    [⌈5)=⌈(4+1)=4!  =((π×((7×5×3)/(2×2×2×2)))/(2×4×3×2))  =π×((7×5×3)/(16×4×3×2×2))  =((35π)/(128))×(1/2)=((35π)/(256))  pls check  ∫_0 ^(π/2) sin^(2p−1) a×cos_ ^(2q−1) ada=((⌈(p)⌈q))/(2⌈(p+q)))  i forgot to put 2 of denominator...later corrected

I=0dx(x2+1)3x=tanadx=sec2ada0π2sec2adasec6a0π2cos4ada0π2(sina)2×121×(cosa)2×521da=(12)(52)2(12+52)now(12)=π(52)=(32+1)=32(32)=32×(12+1)=32×12×π(12+52)=(2+1)=2(1+1)=2×1=2soansweris=π×34×π2×2=316πJ=0dx(x2+1)5=0π2sec2adasec10a=0π2cos8ada=0π2(sina)2×121(cosa)2×921da=(12)(92)2(1+92)=π×72×52×32×12×π2×4×3×2[5)=(4+1)=4!=π×7×5×32×2×2×22×4×3×2=π×7×5×316×4×3×2×2=35π128×12=35π256plscheck0π2sin2p1a×cos2q1ada=(p)q)2(p+q)iforgottoput2ofdenominator...latercorrected

Commented by Mr X pcx last updated on 30/Apr/19

thanks sir

thankssir

Commented by tanmay last updated on 30/Apr/19

most welcome sir...

mostwelcomesir...

Answered by Smail last updated on 30/Apr/19

A_n =∫_0 ^∞ (dx/((x^2 +1)^n ))  let x=tant⇒dx=(1+tan^2 t)dt  A_n =∫_0 ^(π/2) ((1+tan^2 t)/((1+tan^2 t)^n ))dt=∫_0 ^(π/2) (dt/((1+tan^2 t)^(n−1) ))  =∫_0 ^(π/2) cos^(2(n−1)) tdt=∫_0 ^(π/2) (1−sin^2 t)cos^(2n−4) tdt  =∫_0 ^(π/2) cos^(2(n−2)) tdt−∫_0 ^(π/2) sintsintcos^(2n−4) tdt  =A_(n−1) −∫_0 ^(π/2) sint×((d(−cos^(2n−3) t))/((2n−3)))  =A_(n−1) +[(1/(2n−3))sint×cos^(2n−3) t]_0 ^(π/2) −∫_0 ^(π/2) cost×((cos^(2n−3) t)/(2n−3))dt  =A_(n−1) −(A_n /(2n−3))  A_n =((2n−3)/(2(n−1)))A_(n−1) =((2n−3)/(2(n−1)))(((2n−5)/(2(n−2)))A_(n−2) )  ...  A_n =(((2(n−1)−1)(2(n−2)−1)...(2(n−(n−1))−1))/(2^(n−1) (n−1)(n−2)...(n−(n−1))))A_(n−(n−1))   =(((2n−3)(2n−4)(2n−5)(2n−6)...1)/(2^(n−1) (n−1)!×(2n−4)(2n−6)...2))A_1   =(((2n−3)!)/(2^(n−1) (n−1)!×2^(n−2) (n−2)!))∫_0 ^(π/2) dt  =(((2n−3)!)/(2^(2n−3) (n−1)((n−2)!)^2 ))×(π/2)  A_n =((π(n−1)(2n−3)!)/(2^(2n−2) ((n−1)!)^2 ))  For n=3  A_3 =I=∫_0 ^∞ (dx/((x^2 +1)^3 ))=((π(3−1)(6−3)!)/(2^(6−2) ((3−1)!)^2 ))=((3π)/(16))  For n=5  A_5 =J=∫_0 ^∞ (dx/((x^2 +1)^5 ))=((π(5−1)(10−3)!)/(2^(10−2) ((5−1)!)^2 ))  =((7!π)/(2^(12) ×3^2 ))=((7×5π)/2^8 )=((35π)/(256))

An=0dx(x2+1)nletx=tantdx=(1+tan2t)dtAn=0π/21+tan2t(1+tan2t)ndt=0π/2dt(1+tan2t)n1=0π/2cos2(n1)tdt=0π/2(1sin2t)cos2n4tdt=0π/2cos2(n2)tdt0π/2sintsintcos2n4tdt=An10π/2sint×d(cos2n3t)(2n3)=An1+[12n3sint×cos2n3t]0π/20π/2cost×cos2n3t2n3dt=An1An2n3An=2n32(n1)An1=2n32(n1)(2n52(n2)An2)...An=(2(n1)1)(2(n2)1)...(2(n(n1))1)2n1(n1)(n2)...(n(n1))An(n1)=(2n3)(2n4)(2n5)(2n6)...12n1(n1)!×(2n4)(2n6)...2A1=(2n3)!2n1(n1)!×2n2(n2)!0π/2dt=(2n3)!22n3(n1)((n2)!)2×π2An=π(n1)(2n3)!22n2((n1)!)2Forn=3A3=I=0dx(x2+1)3=π(31)(63)!262((31)!)2=3π16Forn=5A5=J=0dx(x2+1)5=π(51)(103)!2102((51)!)2=7!π212×32=7×5π28=35π256

Commented by Mr X pcx last updated on 30/Apr/19

thanks sir

thankssir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com