Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 58791 by Tawa1 last updated on 30/Apr/19

 Show that:         ∫_( 0) ^( ∞)    ((sin(x))/x)   =  (π/2)

$$\:\boldsymbol{\mathrm{Show}}\:\boldsymbol{\mathrm{that}}:\:\:\:\:\:\:\:\:\:\int_{\:\mathrm{0}} ^{\:\infty} \:\:\:\frac{\boldsymbol{\mathrm{sin}}\left(\boldsymbol{\mathrm{x}}\right)}{\boldsymbol{\mathrm{x}}}\:\:\:=\:\:\frac{\pi}{\mathrm{2}} \\ $$

Answered by tanmay last updated on 30/Apr/19

it has some trick to solve...  F(a)=∫_0 ^∞ ((e^(−ax) sinx)/x)dx  (dF/da)=∫_0 ^∞ ((sinx)/x)×(∂/∂a)(e^(−ax) )dx  =∫_0 ^∞ ((sinx)/x)×e^(−ax) ×−xdx  =∫_0 ^∞ −sinx×e^(−ax) dx  now let  p=∫_0 ^∞ e^(−ax) ×cosxdx  q=∫_0 ^∞ e^(−ax) ×sinxdx  p+iq=∫_0 ^∞ e^(−ax) ×e^(ix) dx  p+iq=∫_0 ^∞ e^(−x(a−i)) dx  =∣(e^(−x(a−i)) /(−(a−i)))∣_0 ^∞ =((−1)/(−a+i))=(1/(a−i))=((a+i)/(a^2 +1))  p=(a/(a^2 +1))  and  iq=i((1/(a^2 +1)))  q=(1/(a^2 +1))  ∫_0 ^∞ −e^(−ax) ×sinxdx=−q=((−1)/(a^2 +1))  ∫_0 ^∞ −e^(−ax) ×sinxdx=((−1)/(a^2 +1))=((dF(a))/da)  ∫dF(a)=(−1)∫(da/(a^2 +1))  F(a)=(−1)tan^(−1) a+c    as a→∞ F(a)→0  0=(−1)tan^(−1) (∞)+c  0=−(π/2)+c  c=(π/2)  F(a)=−tan^(−1) (a)+(π/2)  nowF(a)=∫_0 ^∞ e^(−ax) ×((sinx)/x)dx=−tan^(−1) (a)+(π/2)  now if you put a=0  we get  ∫_0 ^∞ ((sinx)/x)dx=−tan^(−1) (0)+(π/2)  ∫_0 ^∞ ((sinx)/x)dx=(π/2)

$${it}\:{has}\:{some}\:{trick}\:{to}\:{solve}... \\ $$$${F}\left({a}\right)=\int_{\mathrm{0}} ^{\infty} \frac{{e}^{−{ax}} {sinx}}{{x}}{dx} \\ $$$$\frac{{dF}}{{da}}=\int_{\mathrm{0}} ^{\infty} \frac{{sinx}}{{x}}×\frac{\partial}{\partial{a}}\left({e}^{−{ax}} \right){dx} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \frac{{sinx}}{{x}}×{e}^{−{ax}} ×−{xdx} \\ $$$$=\int_{\mathrm{0}} ^{\infty} −{sinx}×{e}^{−{ax}} {dx} \\ $$$${now}\:{let} \\ $$$${p}=\int_{\mathrm{0}} ^{\infty} {e}^{−{ax}} ×{cosxdx} \\ $$$${q}=\int_{\mathrm{0}} ^{\infty} {e}^{−{ax}} ×{sinxdx} \\ $$$${p}+{iq}=\int_{\mathrm{0}} ^{\infty} {e}^{−{ax}} ×{e}^{{ix}} {dx} \\ $$$${p}+{iq}=\int_{\mathrm{0}} ^{\infty} {e}^{−{x}\left({a}−{i}\right)} {dx} \\ $$$$=\mid\frac{{e}^{−{x}\left({a}−{i}\right)} }{−\left({a}−{i}\right)}\mid_{\mathrm{0}} ^{\infty} =\frac{−\mathrm{1}}{−{a}+{i}}=\frac{\mathrm{1}}{{a}−{i}}=\frac{{a}+{i}}{{a}^{\mathrm{2}} +\mathrm{1}} \\ $$$${p}=\frac{{a}}{{a}^{\mathrm{2}} +\mathrm{1}}\:\:{and}\:\:{iq}={i}\left(\frac{\mathrm{1}}{{a}^{\mathrm{2}} +\mathrm{1}}\right) \\ $$$${q}=\frac{\mathrm{1}}{{a}^{\mathrm{2}} +\mathrm{1}} \\ $$$$\int_{\mathrm{0}} ^{\infty} −{e}^{−{ax}} ×{sinxdx}=−{q}=\frac{−\mathrm{1}}{{a}^{\mathrm{2}} +\mathrm{1}} \\ $$$$\int_{\mathrm{0}} ^{\infty} −{e}^{−{ax}} ×{sinxdx}=\frac{−\mathrm{1}}{{a}^{\mathrm{2}} +\mathrm{1}}=\frac{{dF}\left({a}\right)}{{da}} \\ $$$$\int{dF}\left({a}\right)=\left(−\mathrm{1}\right)\int\frac{{da}}{{a}^{\mathrm{2}} +\mathrm{1}} \\ $$$${F}\left({a}\right)=\left(−\mathrm{1}\right){tan}^{−\mathrm{1}} {a}+{c} \\ $$$$ \\ $$$${as}\:{a}\rightarrow\infty\:{F}\left({a}\right)\rightarrow\mathrm{0} \\ $$$$\mathrm{0}=\left(−\mathrm{1}\right){tan}^{−\mathrm{1}} \left(\infty\right)+{c} \\ $$$$\mathrm{0}=−\frac{\pi}{\mathrm{2}}+{c} \\ $$$${c}=\frac{\pi}{\mathrm{2}} \\ $$$${F}\left({a}\right)=−{tan}^{−\mathrm{1}} \left({a}\right)+\frac{\pi}{\mathrm{2}} \\ $$$${nowF}\left({a}\right)=\int_{\mathrm{0}} ^{\infty} {e}^{−{ax}} ×\frac{{sinx}}{{x}}{dx}=−{tan}^{−\mathrm{1}} \left({a}\right)+\frac{\pi}{\mathrm{2}} \\ $$$${now}\:{if}\:{you}\:{put}\:{a}=\mathrm{0} \\ $$$${we}\:{get} \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{{sinx}}{{x}}{dx}=−{tan}^{−\mathrm{1}} \left(\mathrm{0}\right)+\frac{\pi}{\mathrm{2}} \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{{sinx}}{{x}}{dx}=\frac{\pi}{\mathrm{2}} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Commented by Tawa1 last updated on 30/Apr/19

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Commented by tanmay last updated on 30/Apr/19

than you...blessing shower to all

$${than}\:{you}...{blessing}\:{shower}\:{to}\:{all} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com