Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 58800 by naka3546 last updated on 30/Apr/19

Commented by MJS last updated on 30/Apr/19

it seems x=((11)/(890)) but I can′t prove it

$$\mathrm{it}\:\mathrm{seems}\:{x}=\frac{\mathrm{11}}{\mathrm{890}}\:\mathrm{but}\:\mathrm{I}\:\mathrm{can}'\mathrm{t}\:\mathrm{prove}\:\mathrm{it} \\ $$

Commented by tanmay last updated on 30/Apr/19

is the numinator of each term related to   fibonacci series...

$${is}\:{the}\:{numinator}\:{of}\:{each}\:{term}\:{related}\:{to}\: \\ $$$${fibonacci}\:{series}... \\ $$

Answered by mr W last updated on 30/Apr/19

T_n =(a_n /b_n )  b_n =10^(n+1)   a_n −a_(n−1) −a_(n−2) =0  x^2 −x−1=0  x=((1±(√5))/2)=α,β  a_n =(α^(n+1) −β^(n+1) )(1/(√5))  T_n =(1/(√5))[((α/(10)))^(n+1) −((β/(10)))^(n+1) ] ← G.P.  Σ_(n=1) ^∞ T_n =(α^2 /(100(√5)(1−(α/(10)))))−(β^2 /(100(√5)(1−(β/(10)))))  =(((1+(√5))^2 )/(40(√5)(10−((1+(√5))/2))))−(((1−(√5))^2 )/(40(√5)(10−((1−(√5))/2))))  =((6+2(√5))/(20(√5)(19−(√5))))−((6−2(√5))/(20(√5)(19+(√5))))  =(((19+(√5))(6+2(√5))−(19−(√5))(6−2(√5)))/(20(√5)×356))  =(((19×6+44(√5)+10)−(19×6−44(√5)+10))/(20(√5)×356))  =((2×44(√5))/(20(√5)×356))  =((11)/(5×178))  =((11)/(890))

$${T}_{{n}} =\frac{{a}_{{n}} }{{b}_{{n}} } \\ $$$${b}_{{n}} =\mathrm{10}^{{n}+\mathrm{1}} \\ $$$${a}_{{n}} −{a}_{{n}−\mathrm{1}} −{a}_{{n}−\mathrm{2}} =\mathrm{0} \\ $$$${x}^{\mathrm{2}} −{x}−\mathrm{1}=\mathrm{0} \\ $$$${x}=\frac{\mathrm{1}\pm\sqrt{\mathrm{5}}}{\mathrm{2}}=\alpha,\beta \\ $$$${a}_{{n}} =\left(\alpha^{{n}+\mathrm{1}} −\beta^{{n}+\mathrm{1}} \right)\frac{\mathrm{1}}{\sqrt{\mathrm{5}}} \\ $$$${T}_{{n}} =\frac{\mathrm{1}}{\sqrt{\mathrm{5}}}\left[\left(\frac{\alpha}{\mathrm{10}}\right)^{{n}+\mathrm{1}} −\left(\frac{\beta}{\mathrm{10}}\right)^{{n}+\mathrm{1}} \right]\:\leftarrow\:{G}.{P}. \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}{T}_{{n}} =\frac{\alpha^{\mathrm{2}} }{\mathrm{100}\sqrt{\mathrm{5}}\left(\mathrm{1}−\frac{\alpha}{\mathrm{10}}\right)}−\frac{\beta^{\mathrm{2}} }{\mathrm{100}\sqrt{\mathrm{5}}\left(\mathrm{1}−\frac{\beta}{\mathrm{10}}\right)} \\ $$$$=\frac{\left(\mathrm{1}+\sqrt{\mathrm{5}}\right)^{\mathrm{2}} }{\mathrm{40}\sqrt{\mathrm{5}}\left(\mathrm{10}−\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\right)}−\frac{\left(\mathrm{1}−\sqrt{\mathrm{5}}\right)^{\mathrm{2}} }{\mathrm{40}\sqrt{\mathrm{5}}\left(\mathrm{10}−\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}}\right)} \\ $$$$=\frac{\mathrm{6}+\mathrm{2}\sqrt{\mathrm{5}}}{\mathrm{20}\sqrt{\mathrm{5}}\left(\mathrm{19}−\sqrt{\mathrm{5}}\right)}−\frac{\mathrm{6}−\mathrm{2}\sqrt{\mathrm{5}}}{\mathrm{20}\sqrt{\mathrm{5}}\left(\mathrm{19}+\sqrt{\mathrm{5}}\right)} \\ $$$$=\frac{\left(\mathrm{19}+\sqrt{\mathrm{5}}\right)\left(\mathrm{6}+\mathrm{2}\sqrt{\mathrm{5}}\right)−\left(\mathrm{19}−\sqrt{\mathrm{5}}\right)\left(\mathrm{6}−\mathrm{2}\sqrt{\mathrm{5}}\right)}{\mathrm{20}\sqrt{\mathrm{5}}×\mathrm{356}} \\ $$$$=\frac{\left(\mathrm{19}×\mathrm{6}+\mathrm{44}\sqrt{\mathrm{5}}+\mathrm{10}\right)−\left(\mathrm{19}×\mathrm{6}−\mathrm{44}\sqrt{\mathrm{5}}+\mathrm{10}\right)}{\mathrm{20}\sqrt{\mathrm{5}}×\mathrm{356}} \\ $$$$=\frac{\mathrm{2}×\mathrm{44}\sqrt{\mathrm{5}}}{\mathrm{20}\sqrt{\mathrm{5}}×\mathrm{356}} \\ $$$$=\frac{\mathrm{11}}{\mathrm{5}×\mathrm{178}} \\ $$$$=\frac{\mathrm{11}}{\mathrm{890}} \\ $$

Commented by MJS last updated on 30/Apr/19

please check. summing up the first 10 terms  I get ((1235955039)/(100000000000))  ((19)/(890))≈.0213  ((11)/(890))≈.0124

$$\mathrm{please}\:\mathrm{check}.\:\mathrm{summing}\:\mathrm{up}\:\mathrm{the}\:\mathrm{first}\:\mathrm{10}\:\mathrm{terms} \\ $$$$\mathrm{I}\:\mathrm{get}\:\frac{\mathrm{1235955039}}{\mathrm{100000000000}} \\ $$$$\frac{\mathrm{19}}{\mathrm{890}}\approx.\mathrm{0213} \\ $$$$\frac{\mathrm{11}}{\mathrm{890}}\approx.\mathrm{0124} \\ $$

Commented by mr W last updated on 30/Apr/19

thanks sir! your answer is correct. i  found my mistake.

$${thanks}\:{sir}!\:{your}\:{answer}\:{is}\:{correct}.\:{i} \\ $$$${found}\:{my}\:{mistake}. \\ $$

Commented by MJS last updated on 30/Apr/19

you′re welcome  thanks for the proof!

$$\mathrm{you}'\mathrm{re}\:\mathrm{welcome} \\ $$$$\mathrm{thanks}\:\mathrm{for}\:\mathrm{the}\:\mathrm{proof}! \\ $$

Answered by Smail last updated on 30/Apr/19

(1/(10^2 ))+(2/(10^3 ))+...=(1/(100))(1+(2/(10))+(3/(10^2 ))...)=(1/(100))Σ_(n=0) ^∞ ((n+1)/(10^n ))  let p′(x)=(1/(100))Σ_(n=0) ^∞ (n+1)x^n   p(x)=(1/(100))Σ_(n=0) ^∞ x^(n+1) +C=(x/(100))Σ_(n=0) ^∞ x^n +C  =(x/(100))((1/(1−x)))+C  with  ∣x∣<1  p′(x)=(1/(100))(((1−x+x)/((1−x)^2 )))=(1/(100(1−x)^2 ))=(1/(100))Σ_(n=0) ^∞ (n+1)x^n   p′((1/(10)))=(1/(100))Σ_(n=0) ^∞ (n+1)((1/(10)))^n =(1/(100(1−(1/(10)))^2 ))  Σ_(n=0) ^∞ ((n+1)/(10^(n+2) ))=(1/9^2 )=(1/(81))

$$\frac{\mathrm{1}}{\mathrm{10}^{\mathrm{2}} }+\frac{\mathrm{2}}{\mathrm{10}^{\mathrm{3}} }+...=\frac{\mathrm{1}}{\mathrm{100}}\left(\mathrm{1}+\frac{\mathrm{2}}{\mathrm{10}}+\frac{\mathrm{3}}{\mathrm{10}^{\mathrm{2}} }...\right)=\frac{\mathrm{1}}{\mathrm{100}}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{n}+\mathrm{1}}{\mathrm{10}^{{n}} } \\ $$$${let}\:{p}'\left({x}\right)=\frac{\mathrm{1}}{\mathrm{100}}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left({n}+\mathrm{1}\right){x}^{{n}} \\ $$$${p}\left({x}\right)=\frac{\mathrm{1}}{\mathrm{100}}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{x}^{{n}+\mathrm{1}} +{C}=\frac{{x}}{\mathrm{100}}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{x}^{{n}} +{C} \\ $$$$=\frac{{x}}{\mathrm{100}}\left(\frac{\mathrm{1}}{\mathrm{1}−{x}}\right)+{C}\:\:{with}\:\:\mid{x}\mid<\mathrm{1} \\ $$$${p}'\left({x}\right)=\frac{\mathrm{1}}{\mathrm{100}}\left(\frac{\mathrm{1}−{x}+{x}}{\left(\mathrm{1}−{x}\right)^{\mathrm{2}} }\right)=\frac{\mathrm{1}}{\mathrm{100}\left(\mathrm{1}−{x}\right)^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{100}}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left({n}+\mathrm{1}\right){x}^{{n}} \\ $$$${p}'\left(\frac{\mathrm{1}}{\mathrm{10}}\right)=\frac{\mathrm{1}}{\mathrm{100}}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left({n}+\mathrm{1}\right)\left(\frac{\mathrm{1}}{\mathrm{10}}\right)^{{n}} =\frac{\mathrm{1}}{\mathrm{100}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{10}}\right)^{\mathrm{2}} } \\ $$$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{n}+\mathrm{1}}{\mathrm{10}^{{n}+\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{9}^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{81}} \\ $$$$ \\ $$

Commented by mr W last updated on 30/Apr/19

please check sir:   it′s (1/(...))+(2/(...))+(3/(...))+(5/(...))+(8/(...))+((13)/(...))+....  not (1/(...))+(2/(...))+(3/(...))+(4/(...))+(5/(...))+(6/(...))+....

$${please}\:{check}\:{sir}:\: \\ $$$${it}'{s}\:\frac{\mathrm{1}}{...}+\frac{\mathrm{2}}{...}+\frac{\mathrm{3}}{...}+\frac{\mathrm{5}}{...}+\frac{\mathrm{8}}{...}+\frac{\mathrm{13}}{...}+.... \\ $$$${not}\:\frac{\mathrm{1}}{...}+\frac{\mathrm{2}}{...}+\frac{\mathrm{3}}{...}+\frac{\mathrm{4}}{...}+\frac{\mathrm{5}}{...}+\frac{\mathrm{6}}{...}+.... \\ $$

Commented by Smail last updated on 30/Apr/19

Thank you for noticing. I did notice the other terms.

$${Thank}\:{you}\:{for}\:{noticing}.\:{I}\:{did}\:{notice}\:{the}\:{other}\:{terms}. \\ $$$$ \\ $$

Commented by mr W last updated on 30/Apr/19

please let your answer stay. though  it′s not for this question, but the  method is great.

$${please}\:{let}\:{your}\:{answer}\:{stay}.\:{though} \\ $$$${it}'{s}\:{not}\:{for}\:{this}\:{question},\:{but}\:{the} \\ $$$${method}\:{is}\:{great}. \\ $$

Commented by maxmathsup by imad last updated on 30/Apr/19

i think the sum is at form Σ  (f_n /(10^n ))     with f_n is fibonacci sequence...

$${i}\:{think}\:{the}\:{sum}\:{is}\:{at}\:{form}\:\Sigma\:\:\frac{{f}_{{n}} }{\mathrm{10}^{{n}} }\:\:\:\:\:{with}\:{f}_{{n}} {is}\:{fibonacci}\:{sequence}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com