Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 58804 by Tawa1 last updated on 30/Apr/19

Find the value of  x:    4 cos x + 3 sin x  =  2

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\:\mathrm{x}:\:\:\:\:\mathrm{4}\:\mathrm{cos}\:\mathrm{x}\:+\:\mathrm{3}\:\mathrm{sin}\:\mathrm{x}\:\:=\:\:\mathrm{2} \\ $$

Commented by MJS last updated on 30/Apr/19

generally  acos x +bsin x =c  x=2arctan t  t^2 −((2b)/(a+c))t−((a−c)/(a+c))=0  t=((b±(√(a^2 +b^2 −c^2 )))/(a+c))  x=2πn+2arctan ((b±(√(a^2 +b^2 −c^2 )))/(a+c)); n∈Z  even if t∉R

$$\mathrm{generally} \\ $$$${a}\mathrm{cos}\:{x}\:+{b}\mathrm{sin}\:{x}\:={c} \\ $$$${x}=\mathrm{2arctan}\:{t} \\ $$$${t}^{\mathrm{2}} −\frac{\mathrm{2}{b}}{{a}+{c}}{t}−\frac{{a}−{c}}{{a}+{c}}=\mathrm{0} \\ $$$${t}=\frac{{b}\pm\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −{c}^{\mathrm{2}} }}{{a}+{c}} \\ $$$${x}=\mathrm{2}\pi{n}+\mathrm{2arctan}\:\frac{{b}\pm\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −{c}^{\mathrm{2}} }}{{a}+{c}};\:{n}\in\mathbb{Z} \\ $$$$\mathrm{even}\:\mathrm{if}\:{t}\notin\mathbb{R} \\ $$

Answered by MJS last updated on 30/Apr/19

4cos x +3sin x =2  x=2arctan t  4((1−t^2 )/(1+t^2 ))+3((2t)/(1+t^2 ))=2  t^2 −t−(1/3)=0  t=(1/2)±((√(21))/6)  x=2πn+2arctan ((3±(√(21)))/6); n∈Z

$$\mathrm{4cos}\:{x}\:+\mathrm{3sin}\:{x}\:=\mathrm{2} \\ $$$${x}=\mathrm{2arctan}\:{t} \\ $$$$\mathrm{4}\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }+\mathrm{3}\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }=\mathrm{2} \\ $$$${t}^{\mathrm{2}} −{t}−\frac{\mathrm{1}}{\mathrm{3}}=\mathrm{0} \\ $$$${t}=\frac{\mathrm{1}}{\mathrm{2}}\pm\frac{\sqrt{\mathrm{21}}}{\mathrm{6}} \\ $$$${x}=\mathrm{2}\pi{n}+\mathrm{2arctan}\:\frac{\mathrm{3}\pm\sqrt{\mathrm{21}}}{\mathrm{6}};\:{n}\in\mathbb{Z} \\ $$

Commented by Tawa1 last updated on 30/Apr/19

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Commented by Tawa1 last updated on 30/Apr/19

Sir, why when  n = 1,   the equation is not equal to  2

$$\mathrm{Sir},\:\mathrm{why}\:\mathrm{when}\:\:\mathrm{n}\:=\:\mathrm{1},\:\:\:\mathrm{the}\:\mathrm{equation}\:\mathrm{is}\:\mathrm{not}\:\mathrm{equal}\:\mathrm{to}\:\:\mathrm{2} \\ $$

Answered by mr W last updated on 30/Apr/19

4 cos x + 3 sin x  =  2  (4/5) cos x + (3/5) sin x  =  (2/5)  cos α cos x + sin α sin x  =  (2/5)  cos (x−α)  =  (2/5)  ⇒x−α=2nπ±cos^(−1) (2/5)  ⇒x=2nπ+α±cos^(−1) (2/5)  ⇒x=2nπ+cos^(−1) (4/5)±cos^(−1) (2/5)

$$\mathrm{4}\:\mathrm{cos}\:\mathrm{x}\:+\:\mathrm{3}\:\mathrm{sin}\:\mathrm{x}\:\:=\:\:\mathrm{2} \\ $$$$\frac{\mathrm{4}}{\mathrm{5}}\:\mathrm{cos}\:\mathrm{x}\:+\:\frac{\mathrm{3}}{\mathrm{5}}\:\mathrm{sin}\:\mathrm{x}\:\:=\:\:\frac{\mathrm{2}}{\mathrm{5}} \\ $$$$\mathrm{cos}\:\alpha\:\mathrm{cos}\:\mathrm{x}\:+\:\mathrm{sin}\:\alpha\:\mathrm{sin}\:\mathrm{x}\:\:=\:\:\frac{\mathrm{2}}{\mathrm{5}} \\ $$$$\mathrm{cos}\:\left(\mathrm{x}−\alpha\right)\:\:=\:\:\frac{\mathrm{2}}{\mathrm{5}} \\ $$$$\Rightarrow{x}−\alpha=\mathrm{2}{n}\pi\pm\mathrm{cos}^{−\mathrm{1}} \frac{\mathrm{2}}{\mathrm{5}} \\ $$$$\Rightarrow{x}=\mathrm{2}{n}\pi+\alpha\pm\mathrm{cos}^{−\mathrm{1}} \frac{\mathrm{2}}{\mathrm{5}} \\ $$$$\Rightarrow{x}=\mathrm{2}{n}\pi+\mathrm{cos}^{−\mathrm{1}} \frac{\mathrm{4}}{\mathrm{5}}\pm\mathrm{cos}^{−\mathrm{1}} \frac{\mathrm{2}}{\mathrm{5}} \\ $$

Commented by Tawa1 last updated on 30/Apr/19

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Commented by Tawa1 last updated on 30/Apr/19

Sir, when  n = 1,  the equation is not equal to  2.

$$\mathrm{Sir},\:\mathrm{when}\:\:\mathrm{n}\:=\:\mathrm{1},\:\:\mathrm{the}\:\mathrm{equation}\:\mathrm{is}\:\mathrm{not}\:\mathrm{equal}\:\mathrm{to}\:\:\mathrm{2}.\: \\ $$

Commented by mr W last updated on 30/Apr/19

how did you come to that?    with n=1:  x=2π+cos^(−1) (4/5)+cos^(−1) (2/5)  or  x=2π+cos^(−1) (4/5)−cos^(−1) (2/5)    with x=2π+cos^(−1) (4/5)+cos^(−1) (2/5):  cos x=cos (cos^(−1) (4/5)+cos^(−1) (2/5))  =(4/5)×(2/5)−(3/5)×((√(21))/5)=((8−3(√(21)))/(25))  sin x=sin (cos^(−1) (4/5)+cos^(−1) (2/5))  =(3/5)×(2/5)+(4/5)×((√(21))/5)=((6+4(√(21)))/(25))  4 cos x+3 sin x=((4(8−3(√(21)))+3(6+4(√(21))))/(25))  =((32+18)/(25))=((50)/(25))=2 !    with x=2π+cos^(−1) (4/5)−cos^(−1) (2/5):  cos x=cos (cos^(−1) (4/5)−cos^(−1) (2/5))  =(4/5)×(2/5)+(3/5)×((√(21))/5)=((8+3(√(21)))/(25))  sin x=sin (cos^(−1) (4/5)−cos^(−1) (2/5))  =(3/5)×(2/5)−(4/5)×((√(21))/5)=((6−4(√(21)))/(25))  4 cos x+3 sin x=((4(8+3(√(21)))+3(6−4(√(21))))/(25))  =((32+18)/(25))=((50)/(25))=2 !

$${how}\:{did}\:{you}\:{come}\:{to}\:{that}? \\ $$$$ \\ $$$${with}\:{n}=\mathrm{1}: \\ $$$${x}=\mathrm{2}\pi+\mathrm{cos}^{−\mathrm{1}} \frac{\mathrm{4}}{\mathrm{5}}+\mathrm{cos}^{−\mathrm{1}} \frac{\mathrm{2}}{\mathrm{5}} \\ $$$${or} \\ $$$${x}=\mathrm{2}\pi+\mathrm{cos}^{−\mathrm{1}} \frac{\mathrm{4}}{\mathrm{5}}−\mathrm{cos}^{−\mathrm{1}} \frac{\mathrm{2}}{\mathrm{5}} \\ $$$$ \\ $$$${with}\:{x}=\mathrm{2}\pi+\mathrm{cos}^{−\mathrm{1}} \frac{\mathrm{4}}{\mathrm{5}}+\mathrm{cos}^{−\mathrm{1}} \frac{\mathrm{2}}{\mathrm{5}}: \\ $$$$\mathrm{cos}\:{x}=\mathrm{cos}\:\left(\mathrm{cos}^{−\mathrm{1}} \frac{\mathrm{4}}{\mathrm{5}}+\mathrm{cos}^{−\mathrm{1}} \frac{\mathrm{2}}{\mathrm{5}}\right) \\ $$$$=\frac{\mathrm{4}}{\mathrm{5}}×\frac{\mathrm{2}}{\mathrm{5}}−\frac{\mathrm{3}}{\mathrm{5}}×\frac{\sqrt{\mathrm{21}}}{\mathrm{5}}=\frac{\mathrm{8}−\mathrm{3}\sqrt{\mathrm{21}}}{\mathrm{25}} \\ $$$$\mathrm{sin}\:{x}=\mathrm{sin}\:\left(\mathrm{cos}^{−\mathrm{1}} \frac{\mathrm{4}}{\mathrm{5}}+\mathrm{cos}^{−\mathrm{1}} \frac{\mathrm{2}}{\mathrm{5}}\right) \\ $$$$=\frac{\mathrm{3}}{\mathrm{5}}×\frac{\mathrm{2}}{\mathrm{5}}+\frac{\mathrm{4}}{\mathrm{5}}×\frac{\sqrt{\mathrm{21}}}{\mathrm{5}}=\frac{\mathrm{6}+\mathrm{4}\sqrt{\mathrm{21}}}{\mathrm{25}} \\ $$$$\mathrm{4}\:\mathrm{cos}\:{x}+\mathrm{3}\:\mathrm{sin}\:{x}=\frac{\mathrm{4}\left(\mathrm{8}−\mathrm{3}\sqrt{\mathrm{21}}\right)+\mathrm{3}\left(\mathrm{6}+\mathrm{4}\sqrt{\mathrm{21}}\right)}{\mathrm{25}} \\ $$$$=\frac{\mathrm{32}+\mathrm{18}}{\mathrm{25}}=\frac{\mathrm{50}}{\mathrm{25}}=\mathrm{2}\:! \\ $$$$ \\ $$$${with}\:{x}=\mathrm{2}\pi+\mathrm{cos}^{−\mathrm{1}} \frac{\mathrm{4}}{\mathrm{5}}−\mathrm{cos}^{−\mathrm{1}} \frac{\mathrm{2}}{\mathrm{5}}: \\ $$$$\mathrm{cos}\:{x}=\mathrm{cos}\:\left(\mathrm{cos}^{−\mathrm{1}} \frac{\mathrm{4}}{\mathrm{5}}−\mathrm{cos}^{−\mathrm{1}} \frac{\mathrm{2}}{\mathrm{5}}\right) \\ $$$$=\frac{\mathrm{4}}{\mathrm{5}}×\frac{\mathrm{2}}{\mathrm{5}}+\frac{\mathrm{3}}{\mathrm{5}}×\frac{\sqrt{\mathrm{21}}}{\mathrm{5}}=\frac{\mathrm{8}+\mathrm{3}\sqrt{\mathrm{21}}}{\mathrm{25}} \\ $$$$\mathrm{sin}\:{x}=\mathrm{sin}\:\left(\mathrm{cos}^{−\mathrm{1}} \frac{\mathrm{4}}{\mathrm{5}}−\mathrm{cos}^{−\mathrm{1}} \frac{\mathrm{2}}{\mathrm{5}}\right) \\ $$$$=\frac{\mathrm{3}}{\mathrm{5}}×\frac{\mathrm{2}}{\mathrm{5}}−\frac{\mathrm{4}}{\mathrm{5}}×\frac{\sqrt{\mathrm{21}}}{\mathrm{5}}=\frac{\mathrm{6}−\mathrm{4}\sqrt{\mathrm{21}}}{\mathrm{25}} \\ $$$$\mathrm{4}\:\mathrm{cos}\:{x}+\mathrm{3}\:\mathrm{sin}\:{x}=\frac{\mathrm{4}\left(\mathrm{8}+\mathrm{3}\sqrt{\mathrm{21}}\right)+\mathrm{3}\left(\mathrm{6}−\mathrm{4}\sqrt{\mathrm{21}}\right)}{\mathrm{25}} \\ $$$$=\frac{\mathrm{32}+\mathrm{18}}{\mathrm{25}}=\frac{\mathrm{50}}{\mathrm{25}}=\mathrm{2}\:! \\ $$

Commented by Tawa1 last updated on 30/Apr/19

Sir, when i used π = 360,  i got 2 now.  Before i used  π = 3.142

$$\mathrm{Sir},\:\mathrm{when}\:\mathrm{i}\:\mathrm{used}\:\pi\:=\:\mathrm{360},\:\:\mathrm{i}\:\mathrm{got}\:\mathrm{2}\:\mathrm{now}.\:\:\mathrm{Before}\:\mathrm{i}\:\mathrm{used}\:\:\pi\:=\:\mathrm{3}.\mathrm{142} \\ $$

Commented by MJS last updated on 30/Apr/19

maybe on your calculator you must set the  mode for the angle  usually it′s “deg” for degree (full circle =360°)  and “rad” for radiant (full circle =2π)

$$\mathrm{maybe}\:\mathrm{on}\:\mathrm{your}\:\mathrm{calculator}\:\mathrm{you}\:\mathrm{must}\:\mathrm{set}\:\mathrm{the} \\ $$$$\mathrm{mode}\:\mathrm{for}\:\mathrm{the}\:\mathrm{angle} \\ $$$$\mathrm{usually}\:\mathrm{it}'\mathrm{s}\:``{deg}''\:\mathrm{for}\:\mathrm{degree}\:\left(\mathrm{full}\:\mathrm{circle}\:=\mathrm{360}°\right) \\ $$$$\mathrm{and}\:``{rad}''\:\mathrm{for}\:\mathrm{radiant}\:\left(\mathrm{full}\:\mathrm{circle}\:=\mathrm{2}\pi\right) \\ $$

Commented by Tawa1 last updated on 30/Apr/19

Ohh. Thanks for your time sir

$$\mathrm{Ohh}.\:\mathrm{Thanks}\:\mathrm{for}\:\mathrm{your}\:\mathrm{time}\:\mathrm{sir} \\ $$

Commented by MJS last updated on 30/Apr/19

you′re welcome

$$\mathrm{you}'\mathrm{re}\:\mathrm{welcome} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com