Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 5882 by sanusihammed last updated on 03/Jun/16

∫cosh^n (x) dx    please help.

$$\int{cosh}^{{n}} \left({x}\right)\:{dx} \\ $$$$ \\ $$$${please}\:{help}. \\ $$

Answered by Yozzii last updated on 03/Jun/16

cosh^n (x)=(((e^x +e^(−x) )/2))^n    n∈N+{0} (assumed)  cosh^n (x)=(1/2^n )Σ_(k=0) ^n { ((n),(k) )(e^x )^(n−k) (e^(−x) )^k }  (Binomial theorem)  cosh^n x=2^(−n) Σ_(k=0) ^n { ((n),(k) )e^(x(n−2k)) }  For term independent of x, ⇒n−2k=0  or k=(n/2) where k∈Z. So,if n is even  then a term independent of x exists  and is given by 2^(−n)  ((n),((n/2)) ). Define  the set R={n,k∈Z^≥ , n≡0(mod 2)∣0≤k≤n and k≠(n/2)}.  ⇒∫cosh^n xdx=∫{2^(−n) Σ_(k∈R)  ((n),(k) )e^(x(n−2k)) +2^(−n)  ((n),((n/2)) )}dx  ∫cosh^n xdx=2^(−n) {Σ_(k∈R) [ ((n),(k) )(e^(x(n−2k)) /(n−2k))]+x ((n),((n/2)) )}+C  This is valid for non−zero even n.  If n=0⇒∫cosh^n xdx=x+C  −−−−−−−−−−−−−−−−−−−−−−−−−−  If n is odd then k=(n/2)∉Z, so that   no term independent of x exists.  ∴ ∫cosh^n xdx=2^(−n) Σ_(k=0) ^n [ ((n),(k) )(e^(x(n−2k)) /(n−2k))]+C  −−−−−−−−−−−−−−−−−−−−−−−−−−  In all, for n∈N+{0}, where R={k,n∈Z^≥ , n≡0(mod 2)∣0≤k≤n and k≠(n/2)}  ∫cosh^n (x)dx= { ((2^(−n) {Σ_(k∈R) [ ((n),(k) )(e^(x(n−2k)) /(n−2k))]+ ((n),((n/2)) )x}+C      if n≡0(mod 2) and n≥2)),((2^(−n) Σ_(k=0) ^n [ ((n),(k) )(e^(x(n−2k)) /(n−2k))]+C                                if n is odd)),((x+C                                                                      if n=0)) :}  C is a constant of integration.

$${cosh}^{{n}} \left({x}\right)=\left(\frac{{e}^{{x}} +{e}^{−{x}} }{\mathrm{2}}\right)^{{n}} \:\:\:{n}\in\mathbb{N}+\left\{\mathrm{0}\right\}\:\left({assumed}\right) \\ $$$${cosh}^{{n}} \left({x}\right)=\frac{\mathrm{1}}{\mathrm{2}^{{n}} }\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\left\{\begin{pmatrix}{{n}}\\{{k}}\end{pmatrix}\left({e}^{{x}} \right)^{{n}−{k}} \left({e}^{−{x}} \right)^{{k}} \right\}\:\:\left({Binomial}\:{theorem}\right) \\ $$$${cosh}^{{n}} {x}=\mathrm{2}^{−{n}} \underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\left\{\begin{pmatrix}{{n}}\\{{k}}\end{pmatrix}{e}^{{x}\left({n}−\mathrm{2}{k}\right)} \right\} \\ $$$${For}\:{term}\:{independent}\:{of}\:{x},\:\Rightarrow{n}−\mathrm{2}{k}=\mathrm{0} \\ $$$${or}\:{k}=\frac{{n}}{\mathrm{2}}\:{where}\:{k}\in\mathbb{Z}.\:{So},{if}\:{n}\:{is}\:{even} \\ $$$${then}\:{a}\:{term}\:{independent}\:{of}\:{x}\:{exists} \\ $$$${and}\:{is}\:{given}\:{by}\:\mathrm{2}^{−{n}} \begin{pmatrix}{{n}}\\{{n}/\mathrm{2}}\end{pmatrix}.\:{Define} \\ $$$${the}\:{set}\:{R}=\left\{{n},{k}\in\mathbb{Z}^{\geqslant} ,\:{n}\equiv\mathrm{0}\left({mod}\:\mathrm{2}\right)\mid\mathrm{0}\leqslant{k}\leqslant{n}\:{and}\:{k}\neq\frac{{n}}{\mathrm{2}}\right\}. \\ $$$$\Rightarrow\int{cosh}^{{n}} {xdx}=\int\left\{\mathrm{2}^{−{n}} \underset{{k}\in{R}} {\sum}\begin{pmatrix}{{n}}\\{{k}}\end{pmatrix}{e}^{{x}\left({n}−\mathrm{2}{k}\right)} +\mathrm{2}^{−{n}} \begin{pmatrix}{{n}}\\{{n}/\mathrm{2}}\end{pmatrix}\right\}{dx} \\ $$$$\int{cosh}^{{n}} {xdx}=\mathrm{2}^{−{n}} \left\{\underset{{k}\in{R}} {\sum}\left[\begin{pmatrix}{{n}}\\{{k}}\end{pmatrix}\frac{{e}^{{x}\left({n}−\mathrm{2}{k}\right)} }{{n}−\mathrm{2}{k}}\right]+{x}\begin{pmatrix}{{n}}\\{{n}/\mathrm{2}}\end{pmatrix}\right\}+{C} \\ $$$${This}\:{is}\:{valid}\:{for}\:{non}−{zero}\:{even}\:{n}. \\ $$$${If}\:{n}=\mathrm{0}\Rightarrow\int{cosh}^{{n}} {xdx}={x}+{C} \\ $$$$−−−−−−−−−−−−−−−−−−−−−−−−−− \\ $$$${If}\:{n}\:{is}\:{odd}\:{then}\:{k}=\frac{{n}}{\mathrm{2}}\notin\mathbb{Z},\:{so}\:{that}\: \\ $$$${no}\:{term}\:{independent}\:{of}\:{x}\:{exists}. \\ $$$$\therefore\:\int{cosh}^{{n}} {xdx}=\mathrm{2}^{−{n}} \underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\left[\begin{pmatrix}{{n}}\\{{k}}\end{pmatrix}\frac{{e}^{{x}\left({n}−\mathrm{2}{k}\right)} }{{n}−\mathrm{2}{k}}\right]+{C} \\ $$$$−−−−−−−−−−−−−−−−−−−−−−−−−− \\ $$$${In}\:{all},\:{for}\:{n}\in\mathbb{N}+\left\{\mathrm{0}\right\},\:{where}\:{R}=\left\{{k},{n}\in\mathbb{Z}^{\geqslant} ,\:{n}\equiv\mathrm{0}\left({mod}\:\mathrm{2}\right)\mid\mathrm{0}\leqslant{k}\leqslant{n}\:{and}\:{k}\neq\frac{{n}}{\mathrm{2}}\right\} \\ $$$$\int{cosh}^{{n}} \left({x}\right){dx}=\begin{cases}{\mathrm{2}^{−{n}} \left\{\underset{{k}\in{R}} {\sum}\left[\begin{pmatrix}{{n}}\\{{k}}\end{pmatrix}\frac{{e}^{{x}\left({n}−\mathrm{2}{k}\right)} }{{n}−\mathrm{2}{k}}\right]+\begin{pmatrix}{{n}}\\{{n}/\mathrm{2}}\end{pmatrix}{x}\right\}+{C}\:\:\:\:\:\:{if}\:{n}\equiv\mathrm{0}\left({mod}\:\mathrm{2}\right)\:{and}\:{n}\geqslant\mathrm{2}}\\{\mathrm{2}^{−{n}} \underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\left[\begin{pmatrix}{{n}}\\{{k}}\end{pmatrix}\frac{{e}^{{x}\left({n}−\mathrm{2}{k}\right)} }{{n}−\mathrm{2}{k}}\right]+{C}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{if}\:{n}\:{is}\:{odd}}\\{{x}+{C}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{if}\:{n}=\mathrm{0}}\end{cases} \\ $$$${C}\:{is}\:{a}\:{constant}\:{of}\:{integration}. \\ $$

Commented by Yozzii last updated on 03/Jun/16

Suppose n∈Z^− ⇒let n=−r where r∈Z^+ .  ⇒I(n)=I(−r)=∫cosh^(−r) xdx  I(−r)=∫sech^r x dx=2^r ∫(dx/((e^x +e^(−x) )^r ))  I(−r)=2^r ∫(e^(2rx) /((1+e^(2x) )^r ))dx=2^r ∫((e^x /(1+e^(2x) )))^r dx  u=e^x ⇒du=e^x dx⇒dx=(1/u)du  ⇒I(−r)=2^r ∫((u/(1+u^2 )))^r (1/u)du  I(−r)=2^r ∫(u^(r−1) /((1+u^2 )^r ))du  ...

$${Suppose}\:{n}\in\mathbb{Z}^{−} \Rightarrow{let}\:{n}=−{r}\:{where}\:{r}\in\mathbb{Z}^{+} . \\ $$$$\Rightarrow{I}\left({n}\right)={I}\left(−{r}\right)=\int{cosh}^{−{r}} {xdx} \\ $$$${I}\left(−{r}\right)=\int{sech}^{{r}} {x}\:{dx}=\mathrm{2}^{{r}} \int\frac{{dx}}{\left({e}^{{x}} +{e}^{−{x}} \right)^{{r}} } \\ $$$${I}\left(−{r}\right)=\mathrm{2}^{{r}} \int\frac{{e}^{\mathrm{2}{rx}} }{\left(\mathrm{1}+{e}^{\mathrm{2}{x}} \right)^{{r}} }{dx}=\mathrm{2}^{{r}} \int\left(\frac{{e}^{{x}} }{\mathrm{1}+{e}^{\mathrm{2}{x}} }\right)^{{r}} {dx} \\ $$$${u}={e}^{{x}} \Rightarrow{du}={e}^{{x}} {dx}\Rightarrow{dx}=\frac{\mathrm{1}}{{u}}{du} \\ $$$$\Rightarrow{I}\left(−{r}\right)=\mathrm{2}^{{r}} \int\left(\frac{{u}}{\mathrm{1}+{u}^{\mathrm{2}} }\right)^{{r}} \frac{\mathrm{1}}{{u}}{du} \\ $$$${I}\left(−{r}\right)=\mathrm{2}^{{r}} \int\frac{{u}^{{r}−\mathrm{1}} }{\left(\mathrm{1}+{u}^{\mathrm{2}} \right)^{{r}} }{du} \\ $$$$... \\ $$

Commented by sanusihammed last updated on 03/Jun/16

Thanks sir.

$${Thanks}\:{sir}. \\ $$

Commented by sanusihammed last updated on 03/Jun/16

Commented by sanusihammed last updated on 03/Jun/16

Please check that result. how come ?

$${Please}\:{check}\:{that}\:{result}.\:{how}\:{come}\:? \\ $$

Commented by Yozzii last updated on 03/Jun/16

The function F(...) is a hypergeometric  function. My level of knowledge and  umderstanding of Mathematics is  insufficient to prove that result.   Sorry...

$${The}\:{function}\:{F}\left(...\right)\:{is}\:{a}\:{hypergeometric} \\ $$$${function}.\:{My}\:{level}\:{of}\:{knowledge}\:{and} \\ $$$${umderstanding}\:{of}\:{Mathematics}\:{is} \\ $$$${insufficient}\:{to}\:{prove}\:{that}\:{result}.\: \\ $$$${Sorry}... \\ $$

Commented by sanusihammed last updated on 03/Jun/16

  Thanks i really appreiate

$$ \\ $$$${Thanks}\:{i}\:{really}\:{appreiate} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com