Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 58827 by jimful last updated on 30/Apr/19

Find  Σ_(x=1) ^∞ ((1/x)−sin((1/x)))

$$\mathrm{Find}\:\:\sum_{\mathrm{x}=\mathrm{1}} ^{\infty} \left(\frac{\mathrm{1}}{\mathrm{x}}−\mathrm{sin}\left(\frac{\mathrm{1}}{\mathrm{x}}\right)\right) \\ $$$$ \\ $$

Commented by tanmay last updated on 30/Apr/19

taking the help of graph we can find the value

$${taking}\:{the}\:{help}\:{of}\:{graph}\:{we}\:{can}\:{find}\:{the}\:{value} \\ $$

Commented by jimful last updated on 01/May/19

thanks. I need to learn more

$$\mathrm{thanks}.\:\mathrm{I}\:\mathrm{need}\:\mathrm{to}\:\mathrm{learn}\:\mathrm{more} \\ $$

Commented by maxmathsup by imad last updated on 30/Apr/19

we have sinx =Σ_(n=0) ^∞  (((−1)^n x^(2n+1) )/((2n+1)!)) =x−(x^3 /(3!)) +(x^5 /(5!)) −... ⇒  x−(x^3 /6) ≤ sinx ≤x ⇒ (1/x) −(1/(6x^3 )) ≤ sin((1/x))≤(1/x)   ⇒ −(1/x) ≤−sin((1/x))≤−(1/x) +(1/(6x^3 )) ⇒0≤ (1/x) −sin((1/x)) ≤ (1/(6x^3 )) ⇒  0≤ Σ_(x=1) ^∞  ((1/x) −sin((1/x))) ≤(1/6) Σ_(x=1) ^∞   (1/x^3 ) ⇒ 0≤ S ≤(1/6)ξ(3) ...

$${we}\:{have}\:{sinx}\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} {x}^{\mathrm{2}{n}+\mathrm{1}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)!}\:={x}−\frac{{x}^{\mathrm{3}} }{\mathrm{3}!}\:+\frac{{x}^{\mathrm{5}} }{\mathrm{5}!}\:−...\:\Rightarrow \\ $$$${x}−\frac{{x}^{\mathrm{3}} }{\mathrm{6}}\:\leqslant\:{sinx}\:\leqslant{x}\:\Rightarrow\:\frac{\mathrm{1}}{{x}}\:−\frac{\mathrm{1}}{\mathrm{6}{x}^{\mathrm{3}} }\:\leqslant\:{sin}\left(\frac{\mathrm{1}}{{x}}\right)\leqslant\frac{\mathrm{1}}{{x}} \\ $$$$\:\Rightarrow\:−\frac{\mathrm{1}}{{x}}\:\leqslant−{sin}\left(\frac{\mathrm{1}}{{x}}\right)\leqslant−\frac{\mathrm{1}}{{x}}\:+\frac{\mathrm{1}}{\mathrm{6}{x}^{\mathrm{3}} }\:\Rightarrow\mathrm{0}\leqslant\:\frac{\mathrm{1}}{{x}}\:−{sin}\left(\frac{\mathrm{1}}{{x}}\right)\:\leqslant\:\frac{\mathrm{1}}{\mathrm{6}{x}^{\mathrm{3}} }\:\Rightarrow \\ $$$$\mathrm{0}\leqslant\:\sum_{{x}=\mathrm{1}} ^{\infty} \:\left(\frac{\mathrm{1}}{{x}}\:−{sin}\left(\frac{\mathrm{1}}{{x}}\right)\right)\:\leqslant\frac{\mathrm{1}}{\mathrm{6}}\:\sum_{{x}=\mathrm{1}} ^{\infty} \:\:\frac{\mathrm{1}}{{x}^{\mathrm{3}} }\:\Rightarrow\:\mathrm{0}\leqslant\:{S}\:\leqslant\frac{\mathrm{1}}{\mathrm{6}}\xi\left(\mathrm{3}\right)\:... \\ $$

Answered by tanmay last updated on 30/Apr/19

f(x)=(1/x)               f(1)=1  g(x)=sin((1/x))      g(1)=sin(1)=0.841  f(1)−g(1)=1−0.841=0.159    f(2)=(1/2)=0.5  g(2)=sin((1/2))=0.479  f(2)−g(2)=0.5−0.479=0.021    △=f(x)−g(x)  thus we see as we increase the value of x   △→0  so Σ_(x=1) ^∞ (1/x)−sin((1/x))=0.159+0.021+ε  Σ_(x=1) ^∞  (1/x)−sin((1/x))=0.18+ε  ε=small positive number  i have tried to find ..it is not exact solution  but interpretation of the problem...

$${f}\left({x}\right)=\frac{\mathrm{1}}{{x}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{f}\left(\mathrm{1}\right)=\mathrm{1} \\ $$$${g}\left({x}\right)={sin}\left(\frac{\mathrm{1}}{{x}}\right)\:\:\:\:\:\:{g}\left(\mathrm{1}\right)={sin}\left(\mathrm{1}\right)=\mathrm{0}.\mathrm{841} \\ $$$${f}\left(\mathrm{1}\right)−{g}\left(\mathrm{1}\right)=\mathrm{1}−\mathrm{0}.\mathrm{841}=\mathrm{0}.\mathrm{159} \\ $$$$ \\ $$$${f}\left(\mathrm{2}\right)=\frac{\mathrm{1}}{\mathrm{2}}=\mathrm{0}.\mathrm{5} \\ $$$${g}\left(\mathrm{2}\right)={sin}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)=\mathrm{0}.\mathrm{479} \\ $$$${f}\left(\mathrm{2}\right)−{g}\left(\mathrm{2}\right)=\mathrm{0}.\mathrm{5}−\mathrm{0}.\mathrm{479}=\mathrm{0}.\mathrm{021} \\ $$$$ \\ $$$$\bigtriangleup={f}\left({x}\right)−{g}\left({x}\right) \\ $$$${thus}\:{we}\:{see}\:{as}\:{we}\:{increase}\:{the}\:{value}\:{of}\:{x}\: \\ $$$$\bigtriangleup\rightarrow\mathrm{0} \\ $$$${so}\:\underset{{x}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{x}}−{sin}\left(\frac{\mathrm{1}}{{x}}\right)=\mathrm{0}.\mathrm{159}+\mathrm{0}.\mathrm{021}+\epsilon \\ $$$$\underset{{x}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{{x}}−{sin}\left(\frac{\mathrm{1}}{{x}}\right)=\mathrm{0}.\mathrm{18}+\epsilon \\ $$$$\epsilon={small}\:{positive}\:{number} \\ $$$${i}\:{have}\:{tried}\:{to}\:{find}\:..{it}\:{is}\:{not}\:{exact}\:{solution} \\ $$$${but}\:{interpretation}\:{of}\:{the}\:{problem}... \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com