Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 58915 by MJS last updated on 01/May/19

reposting this:  x^8 −8x^7 −16x^6 +208x^5 −152x^4 −928x^3 +704x^2 +1088x−368=0  nobody wants to try? it′s beautiful...

repostingthis:x88x716x6+208x5152x4928x3+704x2+1088x368=0nobodywantstotry?itsbeautiful...

Commented by Kunal12588 last updated on 01/May/19

Terrifyingly Beautiful sir

TerrifyinglyBeautifulsir

Commented by Kunal12588 last updated on 01/May/19

Answered by naka3546 last updated on 01/May/19

x^8  − 8x^7  − 16x^6  + 208x^5  − 152x^4  − 928x^3  + 704x^2  + 1088x − 368  =  0  (x^4  − 4x^3  − 16x^2  + 88x − 92)(x^4  − 4x^3  − 16x^2  − 8x + 4)  =  0

x88x716x6+208x5152x4928x3+704x2+1088x368=0(x44x316x2+88x92)(x44x316x28x+4)=0

Commented by naka3546 last updated on 01/May/19

x^8  − 8x^7  − 16x^6  + 208x^5  − 152x^4  − 928x^3  + 704x^2  + 1088x − 368  =  0  ⇒  x^8  − (4x^7  + 4x^7 ) − (16x^6  − 16x^6  + 16x^6 ) + (88x^5  + 64x^5  + 64x^5  − 8x^5 )   − (92x^4  + 352x^4  − 256x^4  − 32x^4  − 4x^4 ) − 928x^3  + 704x^2  + 1088x − 368  =  0  + (368x^3  − 1408x^3  + 128x^3  − 16x^3 ) + (1472x^2  − 704x^2  − 64x^2 )  + (736x + 352x) − 368  = 0  ⇒  (x^4  − 4x^3  − 16x^2  + 88x − 92)(x^4  − 4x^3  − 16x^2  − 8x + 4)  =  0

x88x716x6+208x5152x4928x3+704x2+1088x368=0x8(4x7+4x7)(16x616x6+16x6)+(88x5+64x5+64x58x5)(92x4+352x4256x432x44x4)928x3+704x2+1088x368=0+(368x31408x3+128x316x3)+(1472x2704x264x2)+(736x+352x)368=0(x44x316x2+88x92)(x44x316x28x+4)=0

Commented by MJS last updated on 01/May/19

great! can you go on like this?

great!canyougoonlikethis?

Answered by MJS last updated on 01/May/19

x=w+1  w^8 −44w^6 +438w^4 −1292w^2 +529=0  w=±(√v)  v^4 −44v^3 +438v^2 −1292v+529=0  v_(1, 2) =α±(√β)  v_(3, 4) =γ±(√δ)  (v−v_1 )(v−v_2 )(v−v_3 )(v−v_4 )=v^4 −44v^3 +438v^2 −1292v+529  −2α−2γ=−44 ⇒ α=−γ+22  α^2 +4αγ−β+γ^2 −δ=438 ⇒ β=−2γ^2 +44γ−δ+46  −2α^2 γ−2αγ^2 +2αδ+2βγ=−1292 ⇒ δ=((−γ^3 +33γ^2 −219γ+323)/(γ−11))  α^2 γ^2 −α^2 δ−βγ^2 +βδ=529 ⇒  ⇒ γ^6 −66γ^5 +1671γ^4 −20284γ^3 +121407γ^2 −339042γ+346969=0  γ=u+11  u^6 −144u^4 +6336u^2 −82944=0  u=(√t)  t^3 −144t^2 +6336t−82944=0  t=s+48  s^3 −576s=0 ⇒ s_1 =−24; s_2 =0; s_3 =24  s=0  t=48  u=4(√3)  γ=11+4(√3)  δ=96+48(√3)  (√δ)=6(√2)+2(√6)  α=11−4(√3)  β=96−48(√3)  (√β)=6(√2)−2(√6)  v_1 =11−6(√2)−4(√3)+2(√6)  v_2 =11+6(√2)−4(√3)−2(√6)  v_3 =11−6(√2)+4(√3)−2(√6)  v_4 =11+6(√2)+4(√3)+2(√6)  w_(1, 2) =±(√v_1 )  w_(3, 4) =±(√v_2 )  w_(5, 6) =±(√v_3 )  w_(7, 8) =±(√v_4 )  (√v_4 )=(√(11+6(√2)+4(√3)+2(√6)))=a+b(√2)+c(√3)+d(√6)  11+6(√2)+4(√3)+2(√6)=(a^2 +2b^2 +3c^2 +6d^2 )o+2(ab+3cd)(√2)+2(ac+3bd)(√3)+2(ad+bc)(√6)  now an obvious solution is a=0∧b=c=d=1  ⇒ (√v_4 )=(√(11+6(√2)+4(√3)+2(√6)))=(√2)+(√3)+(√6)  similar  (√v_1 )=(√2)+(√3)−(√6)  (√v_2 )=−(√2)+(√3)+(√6)  (√v_3 )=(√2)−(√3)+(√6)  w_1 =−(√2)−(√3)+(√6) ⇒ x_1 =1−(√2)−(√3)+(√6)  w_2 =(√2)+(√3)−(√6) ⇒ x_2 =1+(√2)+(√3)−(√6)  w_3 =(√2)−(√3)−(√6) ⇒ x_3 =1+(√2)−(√3)−(√6)  w_4 =−(√2)+(√3)+(√6) ⇒ x_4 =1−(√2)+(√3)+(√6)  w_5 =−(√2)+(√3)−(√6) ⇒ x_5 =1−(√2)+(√3)−(√6)  w_6 =(√2)−(√3)+(√6) ⇒ x_6 =1+(√2)−(√3)+(√6)  w_7 =−(√2)−(√3)−(√6) ⇒ x_7 =1−(√2)−(√3)−(√6)  w_8 =(√2)+(√3)+(√6) ⇒ x_8 =1+(√2)+(√3)+(√6)

x=w+1w844w6+438w41292w2+529=0w=±vv444v3+438v21292v+529=0v1,2=α±βv3,4=γ±δ(vv1)(vv2)(vv3)(vv4)=v444v3+438v21292v+5292α2γ=44α=γ+22α2+4αγβ+γ2δ=438β=2γ2+44γδ+462α2γ2αγ2+2αδ+2βγ=1292δ=γ3+33γ2219γ+323γ11α2γ2α2δβγ2+βδ=529γ666γ5+1671γ420284γ3+121407γ2339042γ+346969=0γ=u+11u6144u4+6336u282944=0u=tt3144t2+6336t82944=0t=s+48s3576s=0s1=24;s2=0;s3=24s=0t=48u=43γ=11+43δ=96+483δ=62+26α=1143β=96483β=6226v1=116243+26v2=11+624326v3=1162+4326v4=11+62+43+26w1,2=±v1w3,4=±v2w5,6=±v3w7,8=±v4v4=11+62+43+26=a+b2+c3+d611+62+43+26=(a2+2b2+3c2+6d2)o+2(ab+3cd)2+2(ac+3bd)3+2(ad+bc)6nowanobvioussolutionisa=0b=c=d=1v4=11+62+43+26=2+3+6similarv1=2+36v2=2+3+6v3=23+6w1=23+6x1=123+6w2=2+36x2=1+2+36w3=236x3=1+236w4=2+3+6x4=12+3+6w5=2+36x5=12+36w6=23+6x6=1+23+6w7=236x7=1236w8=2+3+6x8=1+2+3+6

Commented by Kunal12588 last updated on 01/May/19

great sir  x=1±(√2)(√3)±(√2)±(√3)

greatsirx=1±23±2±3

Terms of Service

Privacy Policy

Contact: info@tinkutara.com