Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 58940 by Tony Lin last updated on 01/May/19

e^(i∫_(−2) ^2 (x^2 sinx+(√(1−(x^2 /4))))dx) +lim_(x→2) ((∫_2 ^x log(x+8)dx)/(x−2))=?

$${e}^{{i}\int_{−\mathrm{2}} ^{\mathrm{2}} \left({x}^{\mathrm{2}} {sinx}+\sqrt{\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{4}}}\right){dx}} +\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\frac{\int_{\mathrm{2}} ^{{x}} {log}\left({x}+\mathrm{8}\right){dx}}{{x}−\mathrm{2}}=? \\ $$

Commented by maxmathsup by imad last updated on 01/May/19

let A =∫_(−2) ^2 (x^2 sinx +(√(1−(x^2 /4))))dx ⇒ A =∫_(−2) ^2  x^2  sinx dx +∫_(−2) ^2 (√(1−(x^2 /4)))dx  x→x^2 sin(x) is odd function ⇒ ∫_(−2) ^2  x^2 sin(x)dx =0  ∫_(−2) ^2 (√(1−(x^2 /4)))dx =2 ∫_0 ^2 (√(1−(x^2 /4)))dx=_((x/2)=sin(t))   2 ∫_0 ^(π/2) (√(1−sin^2 t))(2cost)dt   =4 ∫_0 ^(π/2)   cos^2 t dt =4 ∫_0 ^(π/2)   ((1+cos(2t))/2) dt =2 ∫_0 ^(π/2)  (1+cos(2t))dt  =π   +[sin(2t)]_0 ^(π/2)  =π ⇒e^(i ∫_(−2) ^2 (x^2 sinx +(√(1−(x^2 /4))))dx ) =e^(iπ)  =−1  ∫_2 ^x  ln(t+8) dt =_(t+8 =u)    ∫_(10) ^(x+8)  ln(u) du =[uln(u)−u]_(10) ^(x+8)   =(x+8)ln(x+8)−(x+8) −10ln(10) +10 ⇒  lim_(x→2)     ((∫_2 ^x  ln(x+8)dx)/(x−2)) =lim_(x→2)    (((x+8)ln(x+8)−(x+8)−10ln(10) +10)/(x−2))  =lim_(x→2)   ((u^′ (x))/(v^′ (x)))    (using hospital theorem)    u(x)=(x+8)ln(x+8)−(x+8) −10ln(10) +10 ⇒  u^′ (x) =ln(x+8) +1 −1 =ln(x+8) ⇒u^′ (2) =ln(10)  v(x) =x−2 ⇒v^′ (x) =1 ⇒ lim_(x→2)   ((∫_2 ^x  ln(x+8))/(x−2)) dx  =ln(10) ⇒  e^(i∫_(−2) ^2 (....)) dx +lim_(x→2)     ((∫_2 ^x (....)dx)/(x−2)) =−1+ln(10)   here i have taken ln not log  because  log(x) =((ln(x))/(ln(10))) ....

$${let}\:{A}\:=\int_{−\mathrm{2}} ^{\mathrm{2}} \left({x}^{\mathrm{2}} {sinx}\:+\sqrt{\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{4}}}\right){dx}\:\Rightarrow\:{A}\:=\int_{−\mathrm{2}} ^{\mathrm{2}} \:{x}^{\mathrm{2}} \:{sinx}\:{dx}\:+\int_{−\mathrm{2}} ^{\mathrm{2}} \sqrt{\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{4}}}{dx} \\ $$$${x}\rightarrow{x}^{\mathrm{2}} {sin}\left({x}\right)\:{is}\:{odd}\:{function}\:\Rightarrow\:\int_{−\mathrm{2}} ^{\mathrm{2}} \:{x}^{\mathrm{2}} {sin}\left({x}\right){dx}\:=\mathrm{0} \\ $$$$\int_{−\mathrm{2}} ^{\mathrm{2}} \sqrt{\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{4}}}{dx}\:=\mathrm{2}\:\int_{\mathrm{0}} ^{\mathrm{2}} \sqrt{\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{4}}}{dx}=_{\frac{{x}}{\mathrm{2}}={sin}\left({t}\right)} \:\:\mathrm{2}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \sqrt{\mathrm{1}−{sin}^{\mathrm{2}} {t}}\left(\mathrm{2}{cost}\right){dt}\: \\ $$$$=\mathrm{4}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:{cos}^{\mathrm{2}} {t}\:{dt}\:=\mathrm{4}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{\mathrm{1}+{cos}\left(\mathrm{2}{t}\right)}{\mathrm{2}}\:{dt}\:=\mathrm{2}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\left(\mathrm{1}+{cos}\left(\mathrm{2}{t}\right)\right){dt} \\ $$$$=\pi\:\:\:+\left[{sin}\left(\mathrm{2}{t}\right)\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:=\pi\:\Rightarrow{e}^{{i}\:\int_{−\mathrm{2}} ^{\mathrm{2}} \left({x}^{\mathrm{2}} {sinx}\:+\sqrt{\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{4}}}\right){dx}\:} ={e}^{{i}\pi} \:=−\mathrm{1} \\ $$$$\int_{\mathrm{2}} ^{{x}} \:{ln}\left({t}+\mathrm{8}\right)\:{dt}\:=_{{t}+\mathrm{8}\:={u}} \:\:\:\int_{\mathrm{10}} ^{{x}+\mathrm{8}} \:{ln}\left({u}\right)\:{du}\:=\left[{uln}\left({u}\right)−{u}\right]_{\mathrm{10}} ^{{x}+\mathrm{8}} \\ $$$$=\left({x}+\mathrm{8}\right){ln}\left({x}+\mathrm{8}\right)−\left({x}+\mathrm{8}\right)\:−\mathrm{10}{ln}\left(\mathrm{10}\right)\:+\mathrm{10}\:\Rightarrow \\ $$$${lim}_{{x}\rightarrow\mathrm{2}} \:\:\:\:\frac{\int_{\mathrm{2}} ^{{x}} \:{ln}\left({x}+\mathrm{8}\right){dx}}{{x}−\mathrm{2}}\:={lim}_{{x}\rightarrow\mathrm{2}} \:\:\:\frac{\left({x}+\mathrm{8}\right){ln}\left({x}+\mathrm{8}\right)−\left({x}+\mathrm{8}\right)−\mathrm{10}{ln}\left(\mathrm{10}\right)\:+\mathrm{10}}{{x}−\mathrm{2}} \\ $$$$={lim}_{{x}\rightarrow\mathrm{2}} \:\:\frac{{u}^{'} \left({x}\right)}{{v}^{'} \left({x}\right)}\:\:\:\:\left({using}\:{hospital}\:{theorem}\right)\:\: \\ $$$${u}\left({x}\right)=\left({x}+\mathrm{8}\right){ln}\left({x}+\mathrm{8}\right)−\left({x}+\mathrm{8}\right)\:−\mathrm{10}{ln}\left(\mathrm{10}\right)\:+\mathrm{10}\:\Rightarrow \\ $$$${u}^{'} \left({x}\right)\:={ln}\left({x}+\mathrm{8}\right)\:+\mathrm{1}\:−\mathrm{1}\:={ln}\left({x}+\mathrm{8}\right)\:\Rightarrow{u}^{'} \left(\mathrm{2}\right)\:={ln}\left(\mathrm{10}\right) \\ $$$${v}\left({x}\right)\:={x}−\mathrm{2}\:\Rightarrow{v}^{'} \left({x}\right)\:=\mathrm{1}\:\Rightarrow\:{lim}_{{x}\rightarrow\mathrm{2}} \:\:\frac{\int_{\mathrm{2}} ^{{x}} \:{ln}\left({x}+\mathrm{8}\right)}{{x}−\mathrm{2}}\:{dx}\:\:={ln}\left(\mathrm{10}\right)\:\Rightarrow \\ $$$${e}^{{i}\int_{−\mathrm{2}} ^{\mathrm{2}} \left(....\right)} {dx}\:+{lim}_{{x}\rightarrow\mathrm{2}} \:\:\:\:\frac{\int_{\mathrm{2}} ^{{x}} \left(....\right){dx}}{{x}−\mathrm{2}}\:=−\mathrm{1}+{ln}\left(\mathrm{10}\right)\: \\ $$$${here}\:{i}\:{have}\:{taken}\:{ln}\:{not}\:{log}\:\:{because}\:\:{log}\left({x}\right)\:=\frac{{ln}\left({x}\right)}{{ln}\left(\mathrm{10}\right)}\:.... \\ $$$$ \\ $$

Commented by maxmathsup by imad last updated on 01/May/19

if we take log(ddcimal log.) the result will be −1+1=0

$${if}\:{we}\:{take}\:{log}\left({ddcimal}\:{log}.\right)\:{the}\:{result}\:{will}\:{be}\:−\mathrm{1}+\mathrm{1}=\mathrm{0}\: \\ $$

Commented by Tony Lin last updated on 02/May/19

thanks,sir XD

$${thanks},{sir}\:{XD} \\ $$

Answered by tanmay last updated on 02/May/19

log(x+8)=(dF/dx)  ∫_2 ^x (dF/dx)×dx  =F(x)−F(2)  now  lim_(x→2)  ((F(x)−F(2))/(x−2))  h=x−2  lim_(h→0)  ((F(h+2)−F(2))/h)  =F^′ (2)  =log(2+8)=log10

$${log}\left({x}+\mathrm{8}\right)=\frac{{dF}}{{dx}} \\ $$$$\int_{\mathrm{2}} ^{{x}} \frac{{dF}}{{dx}}×{dx} \\ $$$$={F}\left({x}\right)−{F}\left(\mathrm{2}\right) \\ $$$${now}\:\:\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\:\frac{{F}\left({x}\right)−{F}\left(\mathrm{2}\right)}{{x}−\mathrm{2}} \\ $$$${h}={x}−\mathrm{2} \\ $$$$\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{F}\left({h}+\mathrm{2}\right)−{F}\left(\mathrm{2}\right)}{{h}} \\ $$$$={F}^{'} \left(\mathrm{2}\right) \\ $$$$={log}\left(\mathrm{2}+\mathrm{8}\right)={log}\mathrm{10} \\ $$

Commented by Tony Lin last updated on 02/May/19

well done,sir

$${well}\:{done},{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com