All Questions Topic List
Differentiation Questions
Previous in All Question Next in All Question
Previous in Differentiation Next in Differentiation
Question Number 58971 by hovea cw last updated on 02/May/19
Commented by hovea cw last updated on 02/May/19
hdplz
Answered by tanmay last updated on 02/May/19
y=x3+px2+qx+rdydx=3x2+2px+qd2ydx2=6x+2pletpointN(α,0)atpointNyminimum1)dydx=0→3α2+2pα+q=0formin2)d2ydx2>0forminimum3α2+2pα+q=0α=−2p±4p2−12q6α=−p±p2−3q3fromgivenfigureitisclearα>0pointN(−p+p2−3q3,0)(d2ydx2)x=α=6α+2p6(−p+p2−3q3)+2p>02(p2−3q)>0[p2>3q]nowforpointK(0,β)y=x3+px2+qx+rβ=rdydx=3x2+2px+q(dydx)x=03×02+2×p×0+q=0[formaxdydx=0]q=0(d2ydx2)x=06×0+2p<0p<0p<0q=0r=β→K(0,β)β←ordinateofpointKihavetriedtounderstandthequestion...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com