Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 59070 by Tawa1 last updated on 04/May/19

Answered by tanmay last updated on 04/May/19

14)f(x)=q(x)(x−α)  x−α is factor of f(x) if f(α)=0  abc−(a+b+c)(bc+ca+ab)←put a=−b here  (−b)(b)c−(−b+b+c)(bc+c×−b+b×−b)  −b^2 c−c(bc−bc−b^2 )  =−b^2 c−bc^2 +bc^2 +b^2 c  =0  so[(a+b) is a facor   abc−(a+b+c)(bc+ca+ab)  =abc−abc−a(ca+ab)−b(bc+ca+ab)−c(bc+ca+ab)  =−a^2 (b+c)−b^2 c−abc−ab^2 −bc^2 −c^2 a−abc  =(−)[a^2 b+a^2 c+b^2 c+bc^2 +2abc+ab^2 +ac^2 ]  =(−1)[a^2 (b+c)+bc(b+c)+a(b+c)^2 ]  =(−b−c)[a^2 +bc+ab+ac]  =(−1)(b+c)[a(a+b))+c(a+b)]  =(−1)(b+c)(a+b)(a+c)

14)f(x)=q(x)(xα)xαisfactoroff(x)iff(α)=0abc(a+b+c)(bc+ca+ab)puta=bhere(b)(b)c(b+b+c)(bc+c×b+b×b)b2cc(bcbcb2)=b2cbc2+bc2+b2c=0so[(a+b)isafacorabc(a+b+c)(bc+ca+ab)=abcabca(ca+ab)b(bc+ca+ab)c(bc+ca+ab)=a2(b+c)b2cabcab2bc2c2aabc=()[a2b+a2c+b2c+bc2+2abc+ab2+ac2]=(1)[a2(b+c)+bc(b+c)+a(b+c)2]=(bc)[a2+bc+ab+ac]=(1)(b+c)[a(a+b))+c(a+b)]=(1)(b+c)(a+b)(a+c)

Commented by Tawa1 last updated on 04/May/19

God bless you sir

Godblessyousir

Answered by tanmay last updated on 04/May/19

f(x)=px^4 +qx^3 +13x^2 +4x−4=0  f(1)=p+q+13+4−4=0→p+q=−13  f((1/2))=(p/(16))+(q/8)+((13)/4)+(4/2)−4=0  p+2q+52−32=0  p+2q+20=0  p+q+13=0  q+7=0→q=−7  p−7+13=0  p=−6

f(x)=px4+qx3+13x2+4x4=0f(1)=p+q+13+44=0p+q=13f(12)=p16+q8+134+424=0p+2q+5232=0p+2q+20=0p+q+13=0q+7=0q=7p7+13=0p=6

Commented by Tawa1 last updated on 04/May/19

God bless you sir

Godblessyousir

Answered by tanmay last updated on 04/May/19

px^4 +qx^3 −8x^2 +6=q(x)(x^2 −1)+2x+1  so  px^4 +qx^3 −8x^2 +6−2x−1  is divisible by (x^2 −1)  f(x)=px^4 +qx^3 −8x^2 −2x+5  f(1)=p+q−8−2+5=0  p+q−5=0  f(1−)=p−q−8+2+5=0  p−q−1=0  p+q−5=0  p−q−1=0  2p−6=0→p=3  3+q−5=0  q=2  p=3   and  q=2

px4+qx38x2+6=q(x)(x21)+2x+1sopx4+qx38x2+62x1isdivisibleby(x21)f(x)=px4+qx38x22x+5f(1)=p+q82+5=0p+q5=0f(1)=pq8+2+5=0pq1=0p+q5=0pq1=02p6=0p=33+q5=0q=2p=3andq=2

Commented by Tawa1 last updated on 04/May/19

God bless you sir. I appreciate your time

Godblessyousir.Iappreciateyourtime

Terms of Service

Privacy Policy

Contact: info@tinkutara.com