Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 59114 by kelly33 last updated on 04/May/19

Commented by kelly33 last updated on 04/May/19

Please help me.

Pleasehelpme.

Answered by tanmay last updated on 04/May/19

5)trying p=4x+y^2   p=4x+4−2x^2   (dp/dx)=4−4x for max/min (dp/dx)=0→x=1  (d^2 p/dx^2 )=−4    (d^2 p/dx^2 )<0  so maximum  y^2 =4−2x^2 →y^2 =4−2(1)^2   y=±(√2)   p=4x+y^2   =4(1)+2=6  (4x+y^2 )_(max) =6  another way  p=4x+4−2x^2   p=−2(x^2 −2x+1)+2+4  p=−2(x−1)^2 +6  p=6−2(x−1)^2   since (x−1)^2 ≥0  so p_(max) =6  p_(min) =not feasible

5)tryingp=4x+y2p=4x+42x2dpdx=44xformax/mindpdx=0x=1d2pdx2=4d2pdx2<0somaximumy2=42x2y2=42(1)2y=±2p=4x+y2=4(1)+2=6(4x+y2)max=6anotherwayp=4x+42x2p=2(x22x+1)+2+4p=2(x1)2+6p=62(x1)2since(x1)20sopmax=6pmin=notfeasible

Answered by tanmay last updated on 04/May/19

4)f(x)=∣x−1∣+∣x^2 −2x∣  f(x)=∣x−1∣+∣x(x−2)∣  critical value of x are 0,1 snd 2    f(x)=1  when x=2    f(x)=(x−1)−x(x−2)  when 2>x>1           =−x^2 +2x+x−1            =−x^2 +3x−1               =1   when x=1                =  −(x−1)−x(x−2)              when 1>x>0               =−x+1−x^2 +2x               =−x^2 +3x+1      f(x)=1    when x=0    now f(x)=−x^2 +3x−1   when 2>x>1  (df/dx)=−2x+3   for max/min (df/dx)=0 so x=(3/2)=1.5  (d^2 f/dx^2 )=−2<0  so at x=(3/2) f(x) maximum  f(x)_(max) =−x^2 +3x−1                    =−((3/2))^2 +3×(3/2)−1                     =((−9)/4)+(9/2)−1                      =((−9+18−4)/4)=(5/4)  f(x)=−x^2 +3x+1 when   1>x>0  (df/dx)=−2x+3  for max/min (df/dx)=0 so x=(3/2)                 (d^2 f/dx^2 )=−2<0  maximum at x=(3/2) but x=(3/2) does not  lie  in the interval [that is  1>x>0   conclusion  f(x)_(max) =(5/4)  at x=(3/2)  f(x)_(min) =1 when x =2    f(x)_(min) =1    when x=1  f(x)_(min) =1    when x=0  f(x)_(max) =(5/4)  when x=(3/2)

4)f(x)=∣x1+x22xf(x)=∣x1+x(x2)criticalvalueofxare0,1snd2f(x)=1whenx=2f(x)=(x1)x(x2)when2>x>1=x2+2x+x1=x2+3x1=1whenx=1=(x1)x(x2)when1>x>0=x+1x2+2x=x2+3x+1f(x)=1whenx=0nowf(x)=x2+3x1when2>x>1dfdx=2x+3formax/mindfdx=0sox=32=1.5d2fdx2=2<0soatx=32f(x)maximumf(x)max=x2+3x1=(32)2+3×321=94+921=9+1844=54f(x)=x2+3x+1when1>x>0dfdx=2x+3formax/mindfdx=0sox=32d2fdx2=2<0maximumatx=32butx=32doesnotlieintheinterval[thatis1>x>0conclusionf(x)max=54atx=32f(x)min=1whenx=2f(x)min=1whenx=1f(x)min=1whenx=0f(x)max=54whenx=32

Answered by tanmay last updated on 05/May/19

3)y=ax^3 +bx^2 +cx+d  (0,1) (−1,−2),(1,2)(2,9)  1=d  −2=−a+b−c+1  −a+b−c=−3  2=a+b+c+1  −a+b−c=−3      a+b+c=1  2b=−2   b=−1  so   −a−1−c=−3  a+c=2....    a−1+c=1  a+c=2  9=a(2)^3 +b(2)^2 +c(2)+d  9=8a−4+2c+1  8a+2c=12  4a+c=6  a+c=2  3a=4  a=(4/3)  c=2−(4/3)→   c=(2/3)  y=(4/3)x^3 −x^2 +(2/3)x+1

3)y=ax3+bx2+cx+d(0,1)(1,2),(1,2)(2,9)1=d2=a+bc+1a+bc=32=a+b+c+1a+bc=3a+b+c=12b=2b=1soa1c=3a+c=2....a1+c=1a+c=29=a(2)3+b(2)2+c(2)+d9=8a4+2c+18a+2c=124a+c=6a+c=23a=4a=43c=243c=23y=43x3x2+23x+1

Answered by tanmay last updated on 05/May/19

2)formula  X=(x−h)cosθ+(y−k)sinθ   Y=−(x−h)sinθ+(y−k)cosθ  here (h,k)→(2,1)  θ=45^(o  )   (x,y)=(3,3)  X=(3−2)cos45^o +(3−1)sin45^o   X=(1/(√2))(1+2)=(3/(√2))  Y=−(3−2)sin45^o +(3−1)cos45^o   Y=(1/(√2))(−1+2)=(1/(√2))

2)formulaX=(xh)cosθ+(yk)sinθY=(xh)sinθ+(yk)cosθhere(h,k)(2,1)θ=45o(x,y)=(3,3)X=(32)cos45o+(31)sin45oX=12(1+2)=32Y=(32)sin45o+(31)cos45oY=12(1+2)=12

Terms of Service

Privacy Policy

Contact: info@tinkutara.com