Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 59131 by naka3546 last updated on 05/May/19

a, b, c  ∈  R  a + b + c  =  5  Prove  that  (√(a^2  + b^2  − 2b + 1))  +  (√(b^2  + c^2  − 2c + 1))  +  (√(c^2  + a^2  − 2a + 1))   ≥  (√(29))

a,b,cRa+b+c=5Provethata2+b22b+1+b2+c22c+1+c2+a22a+129

Answered by Senior Sun last updated on 06/May/19

By Minkoski  Σ_(cyc) (√(a^2 +(b−1)^2 ))≥(√((Σ_(cyc) a)^2 +(Σ_(cyc) b−3)^2 ))                                 ≥(√(5^2 +(5−3)^2 ))                                 ≥(√(29))  there is no equality, so the givten inequality  is >(√(29))

ByMinkoskicyca2+(b1)2(cyca)2+(cycb3)252+(53)229thereisnoequality,sothegivteninequalityis>29

Answered by tanmay last updated on 05/May/19

(√(a^2 +(b−1)^2 )) +(√(b^2 +(c−1)^2  )) +(√(c^2 +(a−1)^2 ))   ((a^2 +(b−1)^2 )/2)≥[a^2 ×(b−1)^2 ]^(1/2)   (√(a^2 +(b−1)^2 )) ≥(√(2(a)(b−1)))   given exptession≥(√2) [(√(a(b−1))) +(√(b(c−1))) +(√(c(a−1))) ]  (√2)×((a+b−1)/2)≥[a(b−1)]^(1/2) ×(√2)  (√2)×((b+c−1)/2)≥[b(c−1)]^(1/2) ×(√2)  (√2)×((c+a−1)/2)≥[c(a−1)]^(1/2) ×(√2)  (√2)×[((2(a+b+c)−3)/2)]≥(√2) [(√(a(b−1)+b(c−1)+c(a−1)))   (√2) ×(7/2)≥D.E  [D.E=derived expression]

a2+(b1)2+b2+(c1)2+c2+(a1)2a2+(b1)22[a2×(b1)2]12a2+(b1)22(a)(b1)givenexptession2[a(b1)+b(c1)+c(a1)]2×a+b12[a(b1)]12×22×b+c12[b(c1)]12×22×c+a12[c(a1)]12×22×[2(a+b+c)32]2[a(b1)+b(c1)+c(a1)2×72D.E[D.E=derivedexpression]

Commented by tanmay last updated on 05/May/19

to be continued...

tobecontinued...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com