Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 59181 by ajfour last updated on 05/May/19

Commented by mr W last updated on 05/May/19

r≤(R/2) !  so let r=2 instead of 3.

rR2!soletr=2insteadof3.

Answered by mr W last updated on 05/May/19

(√((R−r)^2 −r^2 ))+(√((R−x)^2 −x^2 ))=(√((r+x)^2 −(r−x)^2 ))  (√(R(R−2r)))+(√(R(R−2x)))=2(√(rx))  let λ=(x/R), μ=(r/R)  (√(1−2μ))+(√(1−2λ))=2(√(μλ))  1−2μ+1−2λ+2(√((1−2μ)(1−2λ)))=4μλ  (√((1−2μ)(1−2λ)))=(2μ+1)λ−(1−μ)  (1−2μ)(1−2λ)=(2μ+1)^2 λ^2 −2(1−μ)(2μ+1)λ+(1−μ)^2   (2μ+1)^2 λ^2 −2μ(3−2μ)λ+μ^2 =0  ⇒λ=((μ[(3−2μ)±2(√(2(1−2μ)))])/((2μ+1)^2 ))  with μ=r/R=2/5=0.4  ⇒λ=((2(11±2(√(10))))/(81))= { ((0.094453)),((0.349991)) :}

(Rr)2r2+(Rx)2x2=(r+x)2(rx)2R(R2r)+R(R2x)=2rxletλ=xR,μ=rR12μ+12λ=2μλ12μ+12λ+2(12μ)(12λ)=4μλ(12μ)(12λ)=(2μ+1)λ(1μ)(12μ)(12λ)=(2μ+1)2λ22(1μ)(2μ+1)λ+(1μ)2(2μ+1)2λ22μ(32μ)λ+μ2=0λ=μ[(32μ)±22(12μ)](2μ+1)2withμ=r/R=2/5=0.4λ=2(11±210)81={0.0944530.349991

Commented by ajfour last updated on 06/May/19

Rare and Elegant Sir!  Thank you, so nicely presented.

RareandElegantSir!Thankyou,sonicelypresented.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com