All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 59185 by maxmathsup by imad last updated on 09/May/19
calculate∫01xsinxdxletf(x)=sinx⇒f(x)=f(0)+xf′(0)+x22f(2)(0)+x33!f(3)(0)+o(x4)butf(0)=0f′(x)=cosx⇒f′(0)=1f(2)(x)=−sinx⇒f(2)(0)=0f(3)(0)=−cos(x)⇒f(3)(0)=−1⇒sinx=x−x36+o(x4)⇒x−x33⩽sinx⩽xforx∈]0,1]1x⩽1sinx⩽1x−x36⇒1⩽xsinx⩽11−x26⇒1⩽∫01xsinxdx⩽∫01dx1−x26∫01dx1−x26=x=6t∫0166dt1−t2=62∫016(11−t+11+t)dt=62[ln∣1+t1−t∣]016=62{ln(1+161−16)}=62ln(6+16−1)⇒1⩽∫01xsinxdx⩽62ln(6+16−1).
Commented by maxmathsup by imad last updated on 09/May/19
itsonlyatrychang.tan(x2)=tgiveI=∫01xsinxdx=∫0tan(12)2arctan(t)2t1+t22dt1+t2=2∫0tan(12)arctan(t)tdtletintroducetheparametricfunctionf(α)=∫0tan(12)arctan(tα)tdtwehavef′(α)=∫0tan(12)tt(1+α2t2)dt=∫0tan(12)dt1+α2t2=αt=u∫0αtan(12)duα(1+u2)=1α[arctan(u)]0αtan(12)=1αarctan(αtan(12))⇒f(α)=∫1αarctan(αtan(12))dα+c...becontinued...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com