Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 59185 by maxmathsup by imad last updated on 09/May/19

calculate ∫_0 ^1   (x/(sinx))dx  let f(x) =sinx ⇒f(x) =f(0) +xf^′ (0) +(x^2 /2)f^((2)) (0)+(x^3 /(3!))f^((3)) (0) +o(x^4 )  but f(0) =0   f^′ (x) =cosx ⇒f^′ (0)=1    f^((2)) (x) =−sinx ⇒f^((2)) (0)=0  f^((3)) (0) =−cos(x) ⇒f^((3)) (0) =−1 ⇒sinx =x−(x^3 /6) +o(x^4 ) ⇒  x−(x^3 /3) ≤sinx ≤x    for x ∈]0,1]   (1/x) ≤(1/(sinx)) ≤(1/(x−(x^3 /6))) ⇒1≤(x/(sinx)) ≤(1/(1−(x^2 /6))) ⇒  1 ≤ ∫_0 ^1  (x/(sinx)) dx ≤  ∫_0 ^1    (dx/(1−(x^2 /6)))  ∫_0 ^1    (dx/(1−(x^2 /6))) =_(x =(√6)t)     ∫_0 ^(1/(√6))     (((√6)dt)/(1−t^2 )) =((√6)/2)  ∫_0 ^(1/(√6))   ((1/(1−t)) +(1/(1+t)))dt  =((√6)/2)[ln∣((1+t)/(1−t))∣]_0 ^(1/(√6))   =((√6)/2) { ln(((1+(1/(√6)))/(1−(1/(√6)))))} =((√6)/2) ln((((√6)+1)/((√6)−1))) ⇒  1≤ ∫_0 ^1   (x/(sinx)) dx ≤ ((√6)/2)ln((((√6)+1)/((√6)−1))) .

calculate01xsinxdxletf(x)=sinxf(x)=f(0)+xf(0)+x22f(2)(0)+x33!f(3)(0)+o(x4)butf(0)=0f(x)=cosxf(0)=1f(2)(x)=sinxf(2)(0)=0f(3)(0)=cos(x)f(3)(0)=1sinx=xx36+o(x4)xx33sinxxforx]0,1]1x1sinx1xx361xsinx11x26101xsinxdx01dx1x2601dx1x26=x=6t0166dt1t2=62016(11t+11+t)dt=62[ln1+t1t]016=62{ln(1+16116)}=62ln(6+161)101xsinxdx62ln(6+161).

Commented by maxmathsup by imad last updated on 09/May/19

its only a try   chang.tan((x/2))=t  give    I =∫_0 ^1   (x/(sinx))dx =∫_0 ^(tan((1/2)))    ((2arctan(t))/((2t)/(1+t^2 ))) ((2dt)/(1+t^2 )) = 2∫_0 ^(tan((1/2)))    ((arctan(t))/t) dt  let introduce the parametric function f(α) =∫_0 ^(tan((1/2)))   ((arctan(tα))/t) dt  we have f^′ (α) =∫_0 ^(tan((1/2)))   (t/(t(1+α^2 t^2 ))) dt =∫_0 ^(tan((1/2)))   (dt/(1+α^2 t^2 ))  =_(αt =u)     ∫_0 ^(αtan((1/2)))    (du/(α(1+u^2 ))) =(1/α) [arctan(u)]_0 ^(αtan((1/2)))  = (1/α) arctan(αtan((1/2))) ⇒  f(α) =∫  (1/α) arctan(α tan((1/2)))dα +c ...be continued...

itsonlyatrychang.tan(x2)=tgiveI=01xsinxdx=0tan(12)2arctan(t)2t1+t22dt1+t2=20tan(12)arctan(t)tdtletintroducetheparametricfunctionf(α)=0tan(12)arctan(tα)tdtwehavef(α)=0tan(12)tt(1+α2t2)dt=0tan(12)dt1+α2t2=αt=u0αtan(12)duα(1+u2)=1α[arctan(u)]0αtan(12)=1αarctan(αtan(12))f(α)=1αarctan(αtan(12))dα+c...becontinued...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com