Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 59186 by maxmathsup by imad last updated on 05/May/19

calculate lim_(x→0)    ((arctan{ln(1+x)})/x^2 )

calculatelimx0arctan{ln(1+x)}x2

Commented by kaivan.ahmadi last updated on 05/May/19

hop  lim_(x→0) (1/(2x(1+(ln(1+x))^2 )(1+x)))=∞

hoplimx012x(1+(ln(1+x))2)(1+x)=

Commented by maxmathsup by imad last updated on 06/May/19

let use hospital theorem  let u(x)=arctan(ln(1+x)) and v(x)=x^2   we have u^′ (x) =((1/(1+x))/(1+ln^2 (1+x))) =(1/((1+x)(1+ln^2 (1+x)))) =(1/(f(x))) ⇒  u^((2)) (x) =−((f^′ (x))/(f^2 (x)))   we have f(x)=(x+1)(1+ln^2 (1+x)) ⇒  f^′ (x) =1+ln^2 (1+x) +(x+1)2ln(1+x)(1/(1+x)) =1+ln^2 (1+x)+2ln(1+x) ⇒  u^((2)) (x) =−((1+ln^2 (1+x)+2ln(1+x))/((x+1)^2 {1+ln^2 (1+x)}^2 )) ⇒lim_(x→0)    u^((2)) (x)=−1  also we have  v^′ (x)=2x and v^((2)) (x)=2 ⇒lim_(x→0) v^((2)) (x) =2 ⇒lim_(x→0)   ((arctan(ln(1+x)))/x^2 )  =−(1/2) .

letusehospitaltheoremletu(x)=arctan(ln(1+x))andv(x)=x2wehaveu(x)=11+x1+ln2(1+x)=1(1+x)(1+ln2(1+x))=1f(x)u(2)(x)=f(x)f2(x)wehavef(x)=(x+1)(1+ln2(1+x))f(x)=1+ln2(1+x)+(x+1)2ln(1+x)11+x=1+ln2(1+x)+2ln(1+x)u(2)(x)=1+ln2(1+x)+2ln(1+x)(x+1)2{1+ln2(1+x)}2limx0u(2)(x)=1alsowehavev(x)=2xandv(2)(x)=2limx0v(2)(x)=2limx0arctan(ln(1+x))x2=12.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com