Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 59188 by maxmathsup by imad last updated on 05/May/19

let f(x)=x−(√(4−x^2 ))  and g(x) =((2 +(√(x−3)))/(2−(√(x−3))))  1) find   D_f   ,D_g    and D_(fog)      and  determine fog(x)  2) calculate gof(x) and give D_(gof)   3) calculate ∫_(−(1/2)) ^(1/2) f(x)dx      4) calculate  ∫_4 ^5  g(x)dx .

letf(x)=x4x2andg(x)=2+x32x31)findDf,DgandDfoganddeterminefog(x)2)calculategof(x)andgiveDgof3)calculate1212f(x)dx4)calculate45g(x)dx.

Commented by maxmathsup by imad last updated on 06/May/19

1) x∈D_f ⇔4−x^2 ≥0 ⇔x^2 ≤4 ⇔∣x∣≤2 ⇔−2≤x≤2 ⇒D_f =[−2,2]  x∈D_g  ⇔x−3≥0 and 2−(√(x−3))≠0 ⇔x≥3 and (√(x−3))≠2 ⇔x≥3 and x≠7 ⇒  D_g =[3,7[∪]7,+∞ [  x∈fog ⇔ x∈D_g and g(x)∈ D_f  ⇔ x≥3 and x≠7  and   −2≤g(x)≤2  but  −2≤g(x)≤2 ⇒ 4−g^2 (x)≥0 ⇒4−(((2+(√(x−3)))/(2−(√(x−3)))))^2  ≥0 ⇒  ((4(2−(√(x−3)))^2 −(2+(√(x−3)))^2 )/((2−(√(x−3)))^2 )) ≥0 ⇒4(4−4(√(x−3))+x−3)−(4+4(√(x−3))+x−3)≥0  ⇒16−16(√(x−3))+4x−12 −4−4(√(x−3))−x+3 ≥0 ⇒  −20(√(x−3)) +3x +3 ≥0 ⇒3x+3 ≥20(√(x−3)) ⇒(3x+3)^2 ≥400(x−3) ⇒  9(x^2 +2x+1)≥400x−1200 ⇒  9x^2 +18x−400x +9 +1200 ≥0 ⇒9x^2  −382x +1209 ≥0  Δ^′  =(191)^2 −9.1209 =....

1)xDf4x20x24⇔∣x∣⩽22x2Df=[2,2]xDgx30and2x30x3andx32x3andx7Dg=[3,7[]7,+[xfogxDgandg(x)Dfx3andx7and2g(x)2but2g(x)24g2(x)04(2+x32x3)204(2x3)2(2+x3)2(2x3)204(44x3+x3)(4+4x3+x3)01616x3+4x1244x3x+3020x3+3x+303x+320x3(3x+3)2400(x3)9(x2+2x+1)400x12009x2+18x400x+9+120009x2382x+12090Δ=(191)29.1209=....

Commented by maxmathsup by imad last updated on 06/May/19

fog(x) =f(g(x)) =g(x)−(√(4−(g(x))^2 ))=((2+(√(x−3)))/(2−(√(x−3)))) −(√(4−(((2+(√(x−3)))/(2−(√(x−3)))))^2 ))  2) gof(x) =g(f(x)) =((2+(√(f(x)−3)))/(2−(√(f(x)−3)))) =((2−(√(x−(√(4−x^2 ))−3)))/(2−(√(x−(√(4−x^2 ))−3))))  x∈D_(g0f)  ⇔ x−3−(√(4−x^2 ))≥0 and 4−x^2 ≥0 and (√(x−3−(√(4−x^2 ))))≠2 ⇒  but  4−x^2 ≥0 ⇒−2≤x≤2  x−3−(√(4−x^2 ))≥0 ⇒x−3≥(√(4−x^2 ))   we must have x≥3 but  x∈[−2,2]  condition impossible  so gof is not defined ...!

fog(x)=f(g(x))=g(x)4(g(x))2=2+x32x34(2+x32x3)22)gof(x)=g(f(x))=2+f(x)32f(x)3=2x4x232x4x23xDg0fx34x20and4x20andx34x22but4x202x2x34x20x34x2wemusthavex3butx[2,2]conditionimpossiblesogofisnotdefined...!

Commented by maxmathsup by imad last updated on 06/May/19

3) ∫_(−(1/2)) ^(1/2) f(x)dx =∫_(−(1/2)) ^(1/2) (x−(√(4−x^2 )))dx =∫_(−(1/2)) ^(1/2)  xdx −2∫_0 ^(1/2) (√(4−x^2 ))dx  =0−2∫_0 ^(1/2) (√(4−x^2 ))dx =_(x=2sint)     −2 ∫_0 ^(arcsin((1/4))) 2(√(1−sin^2 t))(2cost)dt  =−8 ∫_0 ^(arcsin((1/4))) cos^2 t dt =−4 ∫_0 ^(arcsin((1/4)))  (1+cos(2t))dt  =−4 arcsin((1/4)) −2 [sin(2t)]_0 ^(arcsin((1/4)))   =−4 arcsin((1/4))−2{ sin(2arsin((1/4))}  but   sin(2arcsin((1/4)))=2sin(arcsin((1/4)))(√(1−sin^2 (arsin((1/4)))))  =(1/2)(√(1−((1/4))^2 ))=(1/2)(√(1−(1/(16))))=(1/2) ((√(15))/4) =((√(15))/8) ⇒  ∫_(−(1/2)) ^(1/2) f(x)dx =−4 arcsin((1/4))−((√(15))/4)

3)1212f(x)dx=1212(x4x2)dx=1212xdx20124x2dx=020124x2dx=x=2sint20arcsin(14)21sin2t(2cost)dt=80arcsin(14)cos2tdt=40arcsin(14)(1+cos(2t))dt=4arcsin(14)2[sin(2t)]0arcsin(14)=4arcsin(14)2{sin(2arsin(14)}butsin(2arcsin(14))=2sin(arcsin(14))1sin2(arsin(14))=121(14)2=121116=12154=1581212f(x)dx=4arcsin(14)154

Commented by maxmathsup by imad last updated on 06/May/19

4) ∫_4 ^5 g(x)dx =∫_4 ^5  ((2+(√(x−3)))/(2−(√(x−3)))) dx =_((√(x−3))=t)    ∫_1 ^(√2)   ((2+t)/(2−t))(2t)dt  =2 ∫_1 ^(√2)   ((t^2 +2t)/(2−t)) dt =−2 ∫_1 ^(√2)    ((t^2  +2t)/(t−2)) dt =−2∫_1 ^(√2)   ((t^2 −4 +4+2t)/(t−2))  =−2∫_1 ^(√2) (  t+2  +((2t+4)/(t−2)))dt =−2 ∫_1 ^(√2) (t+2)dt  −4 ∫_1 ^(√2)   ((t+2)/(t−2)) dt but  ∫_1 ^(√2) (t+2)dt =[(t^2 /2) +2t]_1 ^(√2)  =1+2(√2)−(1/2) −2 =2(√2)−(3/2)  ∫_1 ^(√2) ((t+2)/(t−2)) dt =∫_1 ^(√2)   ((t−2+4)/(t−2)) dt =(√2)−1 +4[ln∣t−2∣]_1 ^(√2) =(√2)−1 +4(ln(2−(√2)) ⇒  ∫_4 ^5 g(x)dx =−4(√2) +3 −4(√2) +4−16ln(2−(√2))=−8(√2) +7−16ln(2−(√2)) .

4)45g(x)dx=452+x32x3dx=x3=t122+t2t(2t)dt=212t2+2t2tdt=212t2+2tt2dt=212t24+4+2tt2=212(t+2+2t+4t2)dt=212(t+2)dt412t+2t2dtbut12(t+2)dt=[t22+2t]12=1+22122=223212t+2t2dt=12t2+4t2dt=21+4[lnt2]12=21+4(ln(22)45g(x)dx=42+342+416ln(22)=82+716ln(22).

Answered by Forkum Michael Choungong last updated on 05/May/19

for 1)  1) f(x)= x−(√(4−x^2 )) and g(x) =((2+(√(x−3)))/(2−(√(x−3))))  let f(x)=0  x−(√(4−x^2 ))=0  (√(4−x^2 ))=x  4−x^2 =x^2   4=2x^2   x=(√2)  D_(f ) = { x:x ∈ R , x≠(√2)}

for1)1)f(x)=x4x2andg(x)=2+x32x3letf(x)=0x4x2=04x2=x4x2=x24=2x2x=2Df={x:xR,x2}

Commented by Mr X pcx last updated on 06/May/19

not correct sir...

notcorrectsir...

Answered by MJS last updated on 06/May/19

D_f ={x∈R ∣ −2≤x≤2}; R_f ={y∈R ∣ −2(√2)≤y≤2}  D_g ={x∈R ∣ x≥3∧x≠7}; R_g ={y∈R ∣ ∣y∣≥1}  f(g(x)) is defined for −2≤g(x)≤2 ⇒  ⇒ D_(f(g(x))) ={x∈R ∣ 3≤x≤((31)/9) ∨ x≥39}  g(f(x)) is defined for f(x)≥3∧f(x)≠7 ⇒  ⇒ D_(g(f(x))) ={}

Df={xR2x2};Rf={yR22y2}Dg={xRx3x7};Rg={yRy∣⩾1}f(g(x))isdefinedfor2g(x)2Df(g(x))={xR3x319x39}g(f(x))isdefinedforf(x)3f(x)7Dg(f(x))={}

Terms of Service

Privacy Policy

Contact: info@tinkutara.com