All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 59193 by salahahmed last updated on 05/May/19
Answered by MJS last updated on 06/May/19
forx∈N∫∞0txe−tdt=x!⇒wehaveoneobvioussolutionatx=5x3−x=x!(x−1)x(x+1)=x!⇒x≠0∧x≠1(x−1)x(x+1)=x(x−1)(x−2)(x−3)...(x+1)=(x−2)⇒nosolutionrememberwe′reseekingx∈N⇒weonlyhavetotryfactorsoftheconstant(x+1)=(x−2)(x−3)x2...+5=0⇒x=5(x+1)=(x−2)(x−3)(x−4)x3...−25=0⇒x=5abovex=5x!>x3−xtherearesolutionsforx∈R∖ZapproximatingwithacalculatorIfoundx≈1.37439465(±5×10−8)thereareinfinitesolutionsforx<−3Ifoundx.≈−3.02andx≈−3.997thereshouldbesolutionsatx=−(2n−1)−δnandatx=−2n+ϵwithn>1∧n∈Nandδn,ϵnbeingverysmallpositivenumbers
Terms of Service
Privacy Policy
Contact: info@tinkutara.com