Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 59193 by salahahmed last updated on 05/May/19

Answered by MJS last updated on 06/May/19

for x∈N ∫_0 ^∞ t^x e^(−t) dt=x!  ⇒ we have one obvious solution at x=5  x^3 −x=x!  (x−1)x(x+1)=x!  ⇒ x≠0∧x≠1  (x−1)x(x+1)=x(x−1)(x−2)(x−3)...    (x+1)=(x−2) ⇒ no solution    remember we′re seeking x∈N ⇒ we only have  to try factors of the constant  (x+1)=(x−2)(x−3)       x^2 ...+5=0 ⇒ x=5  (x+1)=(x−2)(x−3)(x−4)       x^3 ...−25=0 ⇒ x=5    above x=5 x!>x^3 −x    there are solutions for x∈R\Z  approximating with a calculator I found  x≈1.37439465 (±5×10^(−8) )  there are infinite solutions for x<−3  I found x.≈−3.02 and x≈−3.997  there should be solutions at x=−(2n−1)−δ_n   and at x=−2n+ε with n>1∧n∈N and  δ_n , ε_n  being very small positive numbers

forxN0txetdt=x!wehaveoneobvioussolutionatx=5x3x=x!(x1)x(x+1)=x!x0x1(x1)x(x+1)=x(x1)(x2)(x3)...(x+1)=(x2)nosolutionrememberwereseekingxNweonlyhavetotryfactorsoftheconstant(x+1)=(x2)(x3)x2...+5=0x=5(x+1)=(x2)(x3)(x4)x3...25=0x=5abovex=5x!>x3xtherearesolutionsforxRZapproximatingwithacalculatorIfoundx1.37439465(±5×108)thereareinfinitesolutionsforx<3Ifoundx.3.02andx3.997thereshouldbesolutionsatx=(2n1)δnandatx=2n+ϵwithn>1nNandδn,ϵnbeingverysmallpositivenumbers

Terms of Service

Privacy Policy

Contact: info@tinkutara.com