Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 5921 by FilupSmith last updated on 05/Jun/16

Does:   (1)    Σ_(i=1) ^∞ Γ((1/i))  converge?  (2)    Π_(i=1) ^∞ Γ((1/i))  converge?

$$\mathrm{Does}:\: \\ $$$$\left(\mathrm{1}\right)\:\:\:\:\underset{{i}=\mathrm{1}} {\overset{\infty} {\sum}}\Gamma\left(\frac{\mathrm{1}}{{i}}\right)\:\:\mathrm{converge}? \\ $$$$\left(\mathrm{2}\right)\:\:\:\:\underset{{i}=\mathrm{1}} {\overset{\infty} {\prod}}\Gamma\left(\frac{\mathrm{1}}{{i}}\right)\:\:\mathrm{converge}? \\ $$

Commented by Yozzii last updated on 05/Jun/16

(1) Γ(x)Γ(1−x)=(π/(sinπx))  Γ(i^(−1) )=(π/(Γ(1−i^(−1) )sin(π/i)))  Γ(x)=∫_0 ^∞ u^(x−1) e^(−t) dt⇒Γ(1)=∫_0 ^∞ e^(−t) dt=1  lim_(i→∞) Γ(i^(−1) )=(π/(Γ(1)sinπ×0))=(π/(Γ(1)×0))=(π/(1×0))=(π/0)≠0  Since lim_(i→∞) Γ(i^(−1) )≠0,Σ_(i=1) ^∞ Γ(i^(−1) ) is not convergent.  (ii) Let (a_n ) be a sequence with each  a_n >0. If Π_(n=1) ^∞ a_n  converges to a limit  l and l≠0, then (a_n ) converges and   lim_(n→∞) a_n =1.  ⇒If (a_n ) diverges, so that lim_(n→∞) a_n ≠1,  then Π_(n=1) ^∞ a_n  diverges also.  Since lim_(i→∞) Γ(i^(−1) ) does not exist and Γ(i^(−1) )>0 for i∈N,  then Π_(i=1) ^∞ Γ(i^(−1) ) diverges.

$$\left(\mathrm{1}\right)\:\Gamma\left({x}\right)\Gamma\left(\mathrm{1}−{x}\right)=\frac{\pi}{{sin}\pi{x}} \\ $$$$\Gamma\left({i}^{−\mathrm{1}} \right)=\frac{\pi}{\Gamma\left(\mathrm{1}−{i}^{−\mathrm{1}} \right){sin}\frac{\pi}{{i}}} \\ $$$$\Gamma\left({x}\right)=\int_{\mathrm{0}} ^{\infty} {u}^{{x}−\mathrm{1}} {e}^{−{t}} {dt}\Rightarrow\Gamma\left(\mathrm{1}\right)=\int_{\mathrm{0}} ^{\infty} {e}^{−{t}} {dt}=\mathrm{1} \\ $$$$\underset{{i}\rightarrow\infty} {\mathrm{lim}}\Gamma\left({i}^{−\mathrm{1}} \right)=\frac{\pi}{\Gamma\left(\mathrm{1}\right){sin}\pi×\mathrm{0}}=\frac{\pi}{\Gamma\left(\mathrm{1}\right)×\mathrm{0}}=\frac{\pi}{\mathrm{1}×\mathrm{0}}=\frac{\pi}{\mathrm{0}}\neq\mathrm{0} \\ $$$${Since}\:\underset{{i}\rightarrow\infty} {\mathrm{lim}}\Gamma\left({i}^{−\mathrm{1}} \right)\neq\mathrm{0},\underset{{i}=\mathrm{1}} {\overset{\infty} {\sum}}\Gamma\left({i}^{−\mathrm{1}} \right)\:{is}\:{not}\:{convergent}. \\ $$$$\left({ii}\right)\:{Let}\:\left({a}_{{n}} \right)\:{be}\:{a}\:{sequence}\:{with}\:{each} \\ $$$${a}_{{n}} >\mathrm{0}.\:{If}\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}{a}_{{n}} \:{converges}\:{to}\:{a}\:{limit} \\ $$$${l}\:{and}\:{l}\neq\mathrm{0},\:{then}\:\left({a}_{{n}} \right)\:{converges}\:{and}\: \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}{a}_{{n}} =\mathrm{1}. \\ $$$$\Rightarrow{If}\:\left({a}_{{n}} \right)\:{diverges},\:{so}\:{that}\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}{a}_{{n}} \neq\mathrm{1}, \\ $$$${then}\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}{a}_{{n}} \:{diverges}\:{also}. \\ $$$${Since}\:\underset{{i}\rightarrow\infty} {\mathrm{lim}}\Gamma\left({i}^{−\mathrm{1}} \right)\:{does}\:{not}\:{exist}\:{and}\:\Gamma\left({i}^{−\mathrm{1}} \right)>\mathrm{0}\:{for}\:{i}\in\mathbb{N}, \\ $$$${then}\:\underset{{i}=\mathrm{1}} {\overset{\infty} {\prod}}\Gamma\left({i}^{−\mathrm{1}} \right)\:{diverges}. \\ $$$$ \\ $$

Commented by FilupSmith last updated on 05/Jun/16

Amazing!

$$\mathrm{Amazing}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com