Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 59246 by hovea cw last updated on 06/May/19

Commented by MJS last updated on 06/May/19

(1) doesn′t seem to have a “nice” solution  I get (√3)tan 10° cos 40° ≈.233956

(1)doesntseemtohaveanicesolutionIget3tan10°cos40°.233956

Commented by maxmathsup by imad last updated on 07/May/19

let A =sin(10^o )+cos(70^o ).tan(190^o )   let transform to radians  π→180  x→10 ° ⇒180x=10π ⇒x =((10π)/(180)) =(π/(18)) also    70 =((70π)/(180)) =((7π)/(18))  190 =((190π)/(180)) =((19π)/(18)) ⇒A =sin(((5π)/(90)))+cos(((7π)/(18))).tan(π+(π/(18)))  =sin((π/(18))) +cos(((7π)/(18)))tan((π/(18)))  but  cos(((7π)/(18))) =sin((π/2) −((7π)/(18))) =sin(((2π)/(18)))=sin((π/9))  ⇒cos(((7π)/(18)))tan((π/(18)))=2sin((π/(18)))cos((π/(18))) ((sin((π/(18))))/(cos((π/(18))))) =2sin^2 ((π/(18)))=1−cos((π/9)) ⇒  A =sin((π/(18)))+1−cos((π/9)) =2sin^2 ((π/(18)))+sin((π/(18)))  rest to calculate sin((π/(18)))...

letA=sin(10o)+cos(70o).tan(190o)lettransformtoradiansπ180x10°180x=10πx=10π180=π18also70=70π180=7π18190=190π180=19π18A=sin(5π90)+cos(7π18).tan(π+π18)=sin(π18)+cos(7π18)tan(π18)butcos(7π18)=sin(π27π18)=sin(2π18)=sin(π9)cos(7π18)tan(π18)=2sin(π18)cos(π18)sin(π18)cos(π18)=2sin2(π18)=1cos(π9)A=sin(π18)+1cos(π9)=2sin2(π18)+sin(π18)resttocalculatesin(π18)...

Commented by maxmathsup by imad last updated on 07/May/19

2) its eazy    ((cos^2 θ−sin^2 θ)/(cosθ +sinθ)) =(((cosθ−sinθ)(cosθ +sinθ))/(cosθ +sinθ)) =cosθ −sinθ  and θ  ≠−(π/4) +2kπ

2)itseazycos2θsin2θcosθ+sinθ=(cosθsinθ)(cosθ+sinθ)cosθ+sinθ=cosθsinθandθπ4+2kπ

Commented by maxmathsup by imad last updated on 07/May/19

cos(3a) =cos(2a+a) =cos(2a)cos(a)−sin(2a)sin(a)  =(2cos^2 a−1)cos(a)−2cosasin^2 a =2cos^3 a−cosa −2cosa(1−cos^2 a)  =2cos^3 a−cosa−2cosa +2cos^3 a =4cos^3 a−3cosa ⇒  cos(3a) =4cos^3 a−3cosa .

cos(3a)=cos(2a+a)=cos(2a)cos(a)sin(2a)sin(a)=(2cos2a1)cos(a)2cosasin2a=2cos3acosa2cosa(1cos2a)=2cos3acosa2cosa+2cos3a=4cos3a3cosacos(3a)=4cos3a3cosa.

Answered by MJS last updated on 06/May/19

(2) is easy  ((c^2 −s^2 )/(c+s))=(((c−s)(c+s))/(c+s))=c−s

(2)iseasyc2s2c+s=(cs)(c+s)c+s=cs

Answered by MJS last updated on 06/May/19

(3)  sin (α+β) =cos α sin β +sin α cos β  cos (α+β) =cos α cos β −sin α sin β    cos 3α =cos (α+2α) =cos α cos 2α −sin α sin 2α =  =cos α cos (α+α) −sin α sin (α+α) =  =cos α (cos^2  α −sin^2  α)−sin α (2cos α sin α)=  =cos α (cos^2  α −(1−cos^2  α))−2cos α (1−cos^2  α)=  =2cos^3  α −cos α −2cos α +2cos^3  α =  =4cos^3  α −3cos α

(3)sin(α+β)=cosαsinβ+sinαcosβcos(α+β)=cosαcosβsinαsinβcos3α=cos(α+2α)=cosαcos2αsinαsin2α==cosαcos(α+α)sinαsin(α+α)==cosα(cos2αsin2α)sinα(2cosαsinα)==cosα(cos2α(1cos2α))2cosα(1cos2α)==2cos3αcosα2cosα+2cos3α==4cos3α3cosα

Answered by tanmay last updated on 07/May/19

1)sin10^o +cos70^o .tan(190^o )  =sin10^o +sin20^o ×tan(180^o +10^o )  =sin10^o +sin20^o ×tan10^o   =sin10^o (1+((sin20^o )/(cos10^o )))  =sin10^o (((cos10^o +sin20^o )/(cos10^o )))  =sin10^0 ×(((cos10^o +cos70^o )/(cos10^o )))  =sin10^o ×((2cos40^o ×cos30^o )/(cos10^o ))  =(√3) ×tan10^o cos40^o

1)sin10o+cos70o.tan(190o)=sin10o+sin20o×tan(180o+10o)=sin10o+sin20o×tan10o=sin10o(1+sin20ocos10o)=sin10o(cos10o+sin20ocos10o)=sin100×(cos10o+cos70ocos10o)=sin10o×2cos40o×cos30ocos10o=3×tan10ocos40o

Terms of Service

Privacy Policy

Contact: info@tinkutara.com