All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 59247 by maxmathsup by imad last updated on 06/May/19
letf(x)=∫0π2ln(1−xcost)dtwith∣x∣<1 1)developpfatintegrserie 2)findaexplicitformoff(x) 3)findthevaluesofintegrals∫0π2ln(1−cost)dtand∫0π2ln(1+cost)dt 4)calculateUn=∫0π2ln(1−2ncost)dtwithnintegrandn⩾2 studytheconvergenceofUnandΣUn
Commented byMr X pcx last updated on 09/May/19
2)wehavef′(x)=∫0π2−cost1−xcostdt forx≠0f′(x)=1x∫0π21−xcost−11−xcostdt =π2x−1x∫0π2dt1−xcostbut chang.tan(t2)=ugive ∫0π2dt1−xcost=∫0111−x1−u21+u22du1+u2 =∫012du1+u2−x+xu2=∫012du(1+x)u2+1−x =21+x∫01duu2+1−x1+x =u=1−x1+xα21+x∫01+x1−x11−x1+x(1+α2)1−x1+xdα =21−x1−x1+x∫01+x1−xdα1+α2 =21−x2[arctan(α)]01+x1−x =21−x2arctan(1+x1−x)⇒ f′(x)=π2x−2x1−x2arctan(1+x1−x)⇒ f(x)=π2ln∣x∣−∫2x1−x2arctan(1+x1−x)dx+c ∫2x1−x2arctan(1+x1−x)dx =x=cost∫2cost.sintarctan(2cos2(t2)2sin2(t2))(−sint)dt =−2∫1sintarctan(1tan(t2))dt =−2∫1sint(π2−t2)dt =−π∫dtsint+∫tsintdt....becontinued...
Commented bymaxmathsup by imad last updated on 09/May/19
erroratline16wehave∫2x1−x2arctan(1+x1−x)dx =−2∫1cost(π2−t2)dt+c=−π∫dtcost+∫tcostdt+c⇒ f(x)=π2ln∣x∣+π∫dtcost−∫tcostdt+c....
Answered by Mr X pcx last updated on 09/May/19
wehaveln′(1−u)=−11−u=−∑n=0∞un with∣u∣<1⇒ln(1−u)=−∑n=0∞un+1n+1 =−∑n=1∞unnwehave∣xcost∣<1⇒ ln(1−xcost)=−∑n=1∞xncosntn⇒ ∫0π2ln(1−xcost)dt=−∑n=1∞xnn∫0π2cosn(t) =−∑n=1∞AnnxnwithAn=∫0π2cosntdt (integralofwallis).
Terms of Service
Privacy Policy
Contact: info@tinkutara.com