Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 59247 by maxmathsup by imad last updated on 06/May/19

let f(x) =∫_0 ^(π/2) ln(1−xcost)dt  with ∣x∣<1  1) developp f at integr serie  2) find a explicit form of f(x)  3) find the values of integrals ∫_0 ^(π/2) ln(1−cost)dt  and ∫_0 ^(π/2) ln(1+cost)dt  4) calculate  U_n =∫_0 ^(π/2) ln(1−(2/n)cost)dt  with n integr and n≥2  study the convergence of U_n     and Σ U_n

letf(x)=0π2ln(1xcost)dtwithx∣<1 1)developpfatintegrserie 2)findaexplicitformoff(x) 3)findthevaluesofintegrals0π2ln(1cost)dtand0π2ln(1+cost)dt 4)calculateUn=0π2ln(12ncost)dtwithnintegrandn2 studytheconvergenceofUnandΣUn

Commented byMr X pcx last updated on 09/May/19

2) we have f^′ (x) = ∫_0 ^(π/2)   ((−cost)/(1−xcost)) dt  for x≠0  f^′ (x) =(1/x)∫_0 ^(π/2)   ((1−xcost −1)/(1−xcost))dt  =(π/(2x)) −(1/x) ∫_0 ^(π/2)    (dt/(1−x cost))  but  chang.tan((t/2)) =u give  ∫_0 ^(π/2)   (dt/(1−xcost)) =∫_0 ^1    (1/(1−x((1−u^2 )/(1+u^2 )))) ((2du)/(1+u^2 ))  =∫_0 ^1   ((2du)/(1+u^2 −x+xu^2 )) =∫_0 ^1    ((2du)/((1+x)u^2  +1−x))  =(2/(1+x)) ∫_0 ^1     (du/(u^2  +((1−x)/(1+x))))  =_(u=(√((1−x)/(1+x)))α)     (2/(1+x)) ∫_0 ^(√((1+x)/(1−x)))    (1/(((1−x)/(1+x))(1+α^2 )))(√((1−x)/(1+x)))dα  =(2/(1−x)) ((√(1−x))/(√(1+x))) ∫_0 ^(√((1+x)/(1−x)))    (dα/(1+α^2 ))  =(2/(√(1−x^2 ))) [arctan(α)]_0 ^(√((1+x)/(1−x)))   =(2/(√(1−x^2 ))) arctan((√((1+x)/(1−x)))) ⇒  f^′ (x) =(π/(2x)) −(2/(x(√(1−x^2 )))) arctan((√((1+x)/(1−x)))) ⇒  f(x) =(π/2)ln∣x∣ −∫   (2/(x(√(1−x^2 )))) arctan((√((1+x)/(1−x))))dx +c  ∫  (2/(x(√(1−x^2 )))) arctan((√((1+x)/(1−x))))dx  =_(x =cost)    ∫  (2/(cost.sint)) arctan((√((2cos^2 ((t/2)))/(2sin^2 ((t/2))))))(−sint)dt  =−2 ∫   (1/(sint)) arctan((1/(tan((t/2)))))dt  =−2 ∫ (1/(sint))((π/2) −(t/2))dt  =−π ∫ (dt/(sint)) + ∫  (t/(sint)) dt ....be continued...

2)wehavef(x)=0π2cost1xcostdt forx0f(x)=1x0π21xcost11xcostdt =π2x1x0π2dt1xcostbut chang.tan(t2)=ugive 0π2dt1xcost=0111x1u21+u22du1+u2 =012du1+u2x+xu2=012du(1+x)u2+1x =21+x01duu2+1x1+x =u=1x1+xα21+x01+x1x11x1+x(1+α2)1x1+xdα =21x1x1+x01+x1xdα1+α2 =21x2[arctan(α)]01+x1x =21x2arctan(1+x1x) f(x)=π2x2x1x2arctan(1+x1x) f(x)=π2lnx2x1x2arctan(1+x1x)dx+c 2x1x2arctan(1+x1x)dx =x=cost2cost.sintarctan(2cos2(t2)2sin2(t2))(sint)dt =21sintarctan(1tan(t2))dt =21sint(π2t2)dt =πdtsint+tsintdt....becontinued...

Commented bymaxmathsup by imad last updated on 09/May/19

error at line 16    we have ∫    (2/(x(√(1−x^2 )))) arctan((√((1+x)/(1−x))))dx  =−2 ∫ (1/(cost))((π/2)−(t/2))dt+c =−π ∫(dt/(cost)) + ∫  (t/(cost)) dt +c ⇒  f(x) =(π/2)ln∣x∣ +π∫   (dt/(cost)) −∫   (t/(cost)) dt  +c ....

erroratline16wehave2x1x2arctan(1+x1x)dx =21cost(π2t2)dt+c=πdtcost+tcostdt+c f(x)=π2lnx+πdtcosttcostdt+c....

Answered by Mr X pcx last updated on 09/May/19

we have ln^′ (1−u) =((−1)/(1−u)) =−Σ_(n=0) ^∞  u^n   with ∣u∣<1 ⇒ln(1−u) =−Σ_(n=0) ^∞  (u^(n+1) /(n+1))  =−Σ_(n=1) ^∞  (u^n /n)    we have ∣xcost∣<1 ⇒  ln(1−xcost) =−Σ_(n=1) ^∞  ((x^n  cos^n t)/n) ⇒  ∫_0 ^(π/2) ln(1−xcost)dt =−Σ_(n=1) ^∞ (x^n /n) ∫_0 ^(π/2)  cos^n (t)  =−Σ_(n=1) ^∞  (A_n /n) x^n    withA_n =∫_0 ^(π/2)  cos^n t dt  (integral of wallis) .

wehaveln(1u)=11u=n=0un withu∣<1ln(1u)=n=0un+1n+1 =n=1unnwehavexcost∣<1 ln(1xcost)=n=1xncosntn 0π2ln(1xcost)dt=n=1xnn0π2cosn(t) =n=1AnnxnwithAn=0π2cosntdt (integralofwallis).

Terms of Service

Privacy Policy

Contact: info@tinkutara.com