Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 59274 by Mr X pcx last updated on 07/May/19

calculate ∫_0 ^1 arctan(1+x+x^2 )dx

calculate01arctan(1+x+x2)dx

Commented by maxmathsup by imad last updated on 18/May/19

we have  I =∫_0 ^1  arctan(1+x+x^2 ) =∫_0 ^1  arcotan((1/(1+x+x^2 )))  =∫_0 ^1  arcotan(((x+1−x)/(1+(x+1)x)))dx let   x+1=tanα  and x =tanβ ⇒  I =∫_0 ^1  arcotan(((tanα−tanβ)/(1+tanα.tanβ)))dx =∫_0 ^1  arcotan(tan(α−β)  =∫_0 ^1  arcotan(cotan((π/2)−α +β))dx =∫_0 ^1 ((π/2)−α +β)dx  =(π/2) −∫_0 ^1  arctan(x+1) dx +∫_0 ^1  arctanx dx   by parts  ∫_0 ^1  arctanx dx =[x arctanx]_0 ^1 −∫_0 ^1  (x/(1+x^2 ))dx =(π/4) −[(1/2)ln(1+x^2 )]_0 ^1   =(π/4) −((ln(2))/2)  ∫_0 ^1  arctan(x+1)dx =∫_1 ^2  arctan(x)dx =[xarctanx]_1 ^2  −∫_1 ^2  (x/(1+x^2 ))dx  =2arctan2−(π/4) −(1/2)[ln(1+x^2 )]_1 ^2 =2arctan(2)−(π/4) −(1/2)(ln(5)−ln(2)) ⇒  I = (π/2) −2arctan(2)+(π/4) +(1/2)ln(5)−(1/2)ln(2) +((.π)/4) −((ln(2))/2)  I =π −2arctan(2) +((ln(5)−ln(2))/2) .

wehaveI=01arctan(1+x+x2)=01arcotan(11+x+x2)=01arcotan(x+1x1+(x+1)x)dxletx+1=tanαandx=tanβI=01arcotan(tanαtanβ1+tanα.tanβ)dx=01arcotan(tan(αβ)=01arcotan(cotan(π2α+β))dx=01(π2α+β)dx=π201arctan(x+1)dx+01arctanxdxbyparts01arctanxdx=[xarctanx]0101x1+x2dx=π4[12ln(1+x2)]01=π4ln(2)201arctan(x+1)dx=12arctan(x)dx=[xarctanx]1212x1+x2dx=2arctan2π412[ln(1+x2)]12=2arctan(2)π412(ln(5)ln(2))I=π22arctan(2)+π4+12ln(5)12ln(2)+.π4ln(2)2I=π2arctan(2)+ln(5)ln(2)2.

Commented by maxmathsup by imad last updated on 18/May/19

error at final line I = π −2arctan(2) +((ln(5))/2) −ln(2) .

erroratfinallineI=π2arctan(2)+ln(5)2ln(2).

Answered by tanmay last updated on 07/May/19

∫_0 ^1 tan^(−1) (1+x+x^2 )dx  ∫_0 ^1 cot^(−1) ((1/(1+x(x+1))))dx  x+1=tana   x=tanb  (1/(1+x(x+1)))=((tana−tanb)/(1+tanatanb))=tan(a−b)=cot[(π/2)−(a−b)]  cot^(−1) [cot{(π/2)−(a−b)}]  =(π/2)−a+b  =(π/2)−tan^− (x+1)+tan^(−1) x  ∫_0 ^1 (π/2)dx−∫_0 ^1 tan^(−1) (x+1)dx+∫_0 ^1 tan^(−1) xdx  now ∫_0 ^1 (π/2)dx=(π/2)  ∫_0 ^1 tan^(−1) (x+1)dx  ★∫tan^(−1) (x+1)dx  =tan^(−1) (x+1)×x−∫(x/(1+(1+x)^2 ))dx  =xtan^(−1) (x+1)−(1/2)∫((2x+2−2)/(x^2 +2x+2))  =xtan^(−1) (x+1)−(1/2)∫((d(x^2 +2x+2))/(x^2 +2x+2))+∫(dx/(1+(x+1)^2 ))  =xtan^(−1) (x+1)−(1/2)ln(x^2 +2x+2)+tan^(−1) (x+1)  so ∣xtan^(−1) (x+1)−(1/2)ln(x^2 +2x+2)+tan^(−1) (x+1)∣_0 ^1   =■tan^(−1) (2)−(1/2)ln(5)+tan^− (2)+(1/2)ln2−(π/4)■  ∫_0 ^1 tan^(−1) xdx  ∫tan^(−1) xdx  =xtan^(−1) x−∫(x/(1+x^2 ))dx  =xtan^(−1) x−(1/2)ln(1+x^2 )  so∣xtan^(−1) x−(1/2)ln(1+x^2 )∣_0 ^1   =tan^(−1) (1)−(1/2)ln2  =(π/4)−(1/2)ln2  so answer is  ∫_0 ^1 (π/2)dx+∫_0 ^1 tan^(−1) xdx−∫_0 ^1 tan^(−1) (x+1)dx  =(π/2)+(π/4)−(1/2)ln2−2tan^(−1) (2)+(1/2)ln5−(1/2)ln2+(π/4)  =π−ln2+(1/2)ln5−2tan^(−1) (2)  pls go through...

01tan1(1+x+x2)dx01cot1(11+x(x+1))dxx+1=tanax=tanb11+x(x+1)=tanatanb1+tanatanb=tan(ab)=cot[π2(ab)]cot1[cot{π2(ab)}]=π2a+b=π2tan(x+1)+tan1x01π2dx01tan1(x+1)dx+01tan1xdxnow01π2dx=π201tan1(x+1)dxtan1(x+1)dx=tan1(x+1)×xx1+(1+x)2dx=xtan1(x+1)122x+22x2+2x+2=xtan1(x+1)12d(x2+2x+2)x2+2x+2+dx1+(x+1)2=xtan1(x+1)12ln(x2+2x+2)+tan1(x+1)soxtan1(x+1)12ln(x2+2x+2)+tan1(x+1)01=tan1(2)12ln(5)+tan(2)+12ln2π401tan1xdxtan1xdx=xtan1xx1+x2dx=xtan1x12ln(1+x2)soxtan1x12ln(1+x2)01=tan1(1)12ln2=π412ln2soansweris01π2dx+01tan1xdx01tan1(x+1)dx=π2+π412ln22tan1(2)+12ln512ln2+π4=πln2+12ln52tan1(2)plsgothrough...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com