All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 59274 by Mr X pcx last updated on 07/May/19
calculate∫01arctan(1+x+x2)dx
Commented by maxmathsup by imad last updated on 18/May/19
wehaveI=∫01arctan(1+x+x2)=∫01arcotan(11+x+x2)=∫01arcotan(x+1−x1+(x+1)x)dxletx+1=tanαandx=tanβ⇒I=∫01arcotan(tanα−tanβ1+tanα.tanβ)dx=∫01arcotan(tan(α−β)=∫01arcotan(cotan(π2−α+β))dx=∫01(π2−α+β)dx=π2−∫01arctan(x+1)dx+∫01arctanxdxbyparts∫01arctanxdx=[xarctanx]01−∫01x1+x2dx=π4−[12ln(1+x2)]01=π4−ln(2)2∫01arctan(x+1)dx=∫12arctan(x)dx=[xarctanx]12−∫12x1+x2dx=2arctan2−π4−12[ln(1+x2)]12=2arctan(2)−π4−12(ln(5)−ln(2))⇒I=π2−2arctan(2)+π4+12ln(5)−12ln(2)+.π4−ln(2)2I=π−2arctan(2)+ln(5)−ln(2)2.
erroratfinallineI=π−2arctan(2)+ln(5)2−ln(2).
Answered by tanmay last updated on 07/May/19
∫01tan−1(1+x+x2)dx∫01cot−1(11+x(x+1))dxx+1=tanax=tanb11+x(x+1)=tana−tanb1+tanatanb=tan(a−b)=cot[π2−(a−b)]cot−1[cot{π2−(a−b)}]=π2−a+b=π2−tan−(x+1)+tan−1x∫01π2dx−∫01tan−1(x+1)dx+∫01tan−1xdxnow∫01π2dx=π2∫01tan−1(x+1)dx★∫tan−1(x+1)dx=tan−1(x+1)×x−∫x1+(1+x)2dx=xtan−1(x+1)−12∫2x+2−2x2+2x+2=xtan−1(x+1)−12∫d(x2+2x+2)x2+2x+2+∫dx1+(x+1)2=xtan−1(x+1)−12ln(x2+2x+2)+tan−1(x+1)so∣xtan−1(x+1)−12ln(x2+2x+2)+tan−1(x+1)∣01=◼tan−1(2)−12ln(5)+tan−(2)+12ln2−π4◼∫01tan−1xdx∫tan−1xdx=xtan−1x−∫x1+x2dx=xtan−1x−12ln(1+x2)so∣xtan−1x−12ln(1+x2)∣01=tan−1(1)−12ln2=π4−12ln2soansweris∫01π2dx+∫01tan−1xdx−∫01tan−1(x+1)dx=π2+π4−12ln2−2tan−1(2)+12ln5−12ln2+π4=π−ln2+12ln5−2tan−1(2)plsgothrough...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com