Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 59393 by Mikael_Marshall last updated on 09/May/19

lim_(x→+∞)  (((x^2 −4)/(x^2 +2)))^((x^2 −1)/(x+1))   pls.

Missing \left or extra \rightpls.

Commented by maxmathsup by imad last updated on 10/May/19

let A(x) =(((x^2 −4)/(x^2  +2)))^((x^2 −1)/(x+1))  ⇒ln(A(x)) =(((x^2 −1)/(x^2  +2)))ln(((x^2 −4)/(x^2 +2)))  but  ln(((x^2 −4)/(x^2  +2))) =ln(((x^2 +2−6)/(x^2 +2)))=ln(1−(6/(x^2 +2)))∼((−6)/(x^2  +2))(x→+∞)  (because ln(1+u)∼u (u→0)  ⇒ln(A(x))∼((−6(x^2 −1))/((x^2  +2)^2 )) →0  (x→+∞) ⇒lim_(x→+∞) A(x) =1 .

letA(x)=(x24x2+2)x21x+1ln(A(x))=(x21x2+2)ln(x24x2+2)butln(x24x2+2)=ln(x2+26x2+2)=ln(16x2+2)6x2+2(x+)(becauseln(1+u)u(u0)ln(A(x))6(x21)(x2+2)20(x+)limx+A(x)=1.

Commented by Mikael_Marshall last updated on 10/May/19

thank you Sir

thankyouSir

Commented by mr W last updated on 10/May/19

please check sir:  let A(x) =(((x^2 −4)/(x^2  +2)))^((x^2 −1)/(x+1))  ⇒ln(A(x)) =(((x^2 −1)/(x +1)))ln(((x^2 −4)/(x^2 +2)))

pleasechecksir:letA(x)=(x24x2+2)x21x+1ln(A(x))=(x21x+1)ln(x24x2+2)

Commented by kaivan.ahmadi last updated on 10/May/19

if limf(x)^(g(x)) =1^∞  we can use  lim e^(g(x)(f(x)−1))   so  lim_(x→+∞)  e^((((x^2 −1)/(x+1)))(((x^2 −4)/(x^2 +2))−1)) =lim_(x→+∞)  e^((((x^2 −1)/(x+1)))(((−6)/(x^2 +2)))) =  e^0 =1

iflimf(x)g(x)=1wecanuselimeg(x)(f(x)1)solimx+e(x21x+1)(x24x2+21)=limx+e(x21x+1)(6x2+2)=e0=1

Commented by Mikael_Marshall last updated on 10/May/19

thanks Sir

thanksSir

Commented by maxmathsup by imad last updated on 10/May/19

yes sir i have commited a error let rectify  ln(A(x))=((x^2 −1)/(x+1))ln(((x^2 −4)/(x^2  +2))) ⇒  ln(A(x)) ∼((x^2 −1)/(x+1)).((−6)/(x^2 +2))  =((−6x^2 +6)/((x+1)(x^2 +2))) →0(x→+∞) ⇒lim_(x→+∞) A(x)=1.

yessirihavecommitedaerrorletrectifyln(A(x))=x21x+1ln(x24x2+2)ln(A(x))x21x+1.6x2+2=6x2+6(x+1)(x2+2)0(x+)limx+A(x)=1.

Answered by malwaan last updated on 10/May/19

lim_(x→∞) (((x^2 +2−6)/(x^2 +2)))^(((x+1)(x−1))/(x+1))   =lim_(x→∞) (1−(6/(x^2 +2)))^(x−1)   =lim_(x→∞) (1+((−6)/(x^2 +2)))^((((x^2 +2)/(−6)))(x−1)(((−6)/(x^2 +2_ ))))   =lim_(x→∞) [(1+((−6)/(x^2 +2)))^((((x^2 +2)/(−6)))) ]^((−6(x−1))/(x^2 +2))   =[e^(−6) ]^0  =1

limx(x2+26x2+2)(x+1)(x1)x+1=limx(16x2+2)x1=limx(1+6x2+2)(x2+26)(x1)(6x2+2)=limx[(1+6x2+2)(x2+26)]6(x1)x2+2=[e6]0=1

Commented by Mikael_Marshall last updated on 10/May/19

thanks Sir

thanksSir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com