Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 59499 by MathGuru last updated on 11/May/19

Commented by maxmathsup by imad last updated on 11/May/19

we have x^2 −3x =x(x−3)  and 2x−6 =2(x−3)  and  x^2 −5x +6 =x^2 −9 −5x +15 =(x−3)(x+3) −5(x−3)=(x−3)(x−2) so  (e) ⇔∣x∣∣x−3∣+2∣x−3∣ =∣x−3∣∣x−2∣ ⇔∣x−3∣( ∣x∣ +2−∣x−2∣)=0 ⇔  x=3 or   ∣x∣−∣x−2∣ +2 =0  x       −∞                        0                         2                   +∞  ∣x∣                      −x         0          x                     x  ∣x−2∣         −x+2              −x+2            x−2  f(x)            0                             2x                      4  if x≤0    all x is solution  if   0≤x≤2      f(x)=0 ⇔2x=0 ⇔x=0  if x≥2   f(x)=0 ⇔4=0  impossible  so  the set of solution is]−∞,0]∪{3}

wehavex23x=x(x3)and2x6=2(x3)andx25x+6=x295x+15=(x3)(x+3)5(x3)=(x3)(x2)so(e)⇔∣x∣∣x3+2x3=∣x3∣∣x2⇔∣x3(x+2x2)=0x=3orxx2+2=0x02+xx0xxx2x+2x+2x2f(x)02x4ifx0allxissolutionif0x2f(x)=02x=0x=0ifx2f(x)=04=0impossiblesothesetofsolutionis],0]{3}

Commented by maxmathsup by imad last updated on 11/May/19

f(x)=∣x∣−∣x−2∣+2

f(x)=∣xx2+2

Commented by MathGuru last updated on 11/May/19

We may solve in a different mehod:       ∣x^2 −3x∣+∣2x−6∣ = ∣x^2 −5x+6∣  ⇒∣x^2 −3x∣+∣6−2x∣ = ∣(x^2 −3x)+(6−2x)∣  ⇒(x^2 −3x)(6−2x)≥0  ⇒x(x−3)2(3−x)≥0  ⇒2x(x−3)^2 ≤0  ⇒x≤0  or  x=3

Wemaysolveinadifferentmehod:x23x+2x6=x25x+6⇒∣x23x+62x=(x23x)+(62x)(x23x)(62x)0x(x3)2(3x)02x(x3)20x0orx=3

Answered by tanmay last updated on 11/May/19

∣x(x−3)∣+∣2(x−3)∣=∣(x−2)(x−3)∣    critical value of x=0,2,3  when x≥3  x(x−3)+2(x−3)=(x−2)(x−3)  x^2 −3x+2x−6=x^2 −5x+6  4x=12  x=3....look here  when x<0  x(x−3)−2(x−3)=(x−2)(x−3)  x^2 −3x−2x+6=x^2 −5x+6  it become identity....look here  when 3>x>2  −x(x−3)−2(x−3)=−(x−2)(x−3)  −x^2 +3x−2x+6=−x^2 +5x−6  −4x=−12  x=3 but this value do not conform to 3>x>2  when 2>x>0  −x(x−3)−2(x−3)=(x−2)(x−3)  −x^2 +3x−2x+6=x^2 −5x+6  −2x^2 +6x=0  −2x(x−3)=0  x=0 and x=3  but x=0 and x=3 do not conform to  condition 2>x>0  so x=3 is the only solution   pls check

x(x3)+2(x3)∣=∣(x2)(x3)criticalvalueofx=0,2,3whenx3x(x3)+2(x3)=(x2)(x3)x23x+2x6=x25x+64x=12x=3....lookherewhenx<0x(x3)2(x3)=(x2)(x3)x23x2x+6=x25x+6itbecomeidentity....lookherewhen3>x>2x(x3)2(x3)=(x2)(x3)x2+3x2x+6=x2+5x64x=12x=3butthisvaluedonotconformto3>x>2when2>x>0x(x3)2(x3)=(x2)(x3)x2+3x2x+6=x25x+62x2+6x=02x(x3)=0x=0andx=3butx=0andx=3donotconformtocondition2>x>0sox=3istheonlysolutionplscheck

Terms of Service

Privacy Policy

Contact: info@tinkutara.com