Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 59518 by Mr X pcx last updated on 11/May/19

if  x+y+z=1  x^2  +y^2  +z^2 =2  x^3  +y^3  +z^3 =3  calculste  x^5 +y^5  +z^5

ifx+y+z=1x2+y2+z2=2x3+y3+z3=3calculstex5+y5+z5

Commented by MJS last updated on 11/May/19

we had this several times before. the answer is 6

wehadthisseveraltimesbefore.theansweris6

Answered by MJS last updated on 11/May/19

put x=a; y=b−ci; z=b+ci  x+y+z=1 ⇒ a+2b=1 ⇒ a=1−2b  x^2 +y^2 +z^2 =2 ⇒ a^2 +2b^2 −2c^2 =2 ⇒       ⇒ 6b^2 −4b−2c^2 +1=2 ⇒ c=((√(2(6b^2 −4b−1)))/2)  x^3 +y^3 +z^3 =3 ⇒ a^3 +2b(b^2 −3c^2 )=3 ⇒       ⇒ −24b^3 +24b^2 −3b+1=3 ⇒       ⇒ b^3 −b^2 +(1/8)b+(1/(12))=0    x^5 +y^5 +z^5 =a^5 +2b(b^4 −10b^2 c^2 +5c^4 )=       =−60b^3 +60b^2 −((15)/2)b+1=−60(b^3 −b^2 +(1/8)b−(1/(60)))    b^3 −b^2 +(1/8)b+(1/(12))=0 ⇒ b^3 −b^2 +(1/8)b−(1/(60))=−(1/(10)) ⇒       ⇒ −60(b^3 −b^2 +(1/8)b−(1/(60)))=6 ⇒       ⇒ x^5 +y^5 +z^5 =6

putx=a;y=bci;z=b+cix+y+z=1a+2b=1a=12bx2+y2+z2=2a2+2b22c2=26b24b2c2+1=2c=2(6b24b1)2x3+y3+z3=3a3+2b(b23c2)=324b3+24b23b+1=3b3b2+18b+112=0x5+y5+z5=a5+2b(b410b2c2+5c4)==60b3+60b2152b+1=60(b3b2+18b160)b3b2+18b+112=0b3b2+18b160=11060(b3b2+18b160)=6x5+y5+z5=6

Commented by MJS last updated on 11/May/19

x+y+z=α  x^2 +y^2 +z^2 =β  x^3 +y^3 +z^3 =γ  ⇒  x^4 +y^4 +z^4 =(1/6)α^4 −α^2 β+(4/3)αγ+(1/2)β^2   x^5 +y^5 +z^5 =(1/6)α^5 −(5/6)α^3 β+(5/6)α^2 γ+(5/6)βγ

x+y+z=αx2+y2+z2=βx3+y3+z3=γx4+y4+z4=16α4α2β+43αγ+12β2x5+y5+z5=16α556α3β+56α2γ+56βγ

Commented by maxmathsup by imad last updated on 11/May/19

thanks sir mjs

thankssirmjs

Commented by Tawa1 last updated on 21/Jul/19

Sir reference to the identity.  I did not get 6 when i substitute  α = 1, β = 2, γ = 3    for   α^5  + β^5  + γ^5   and i got  ((25)/6)  for    α^4  + β^4  + γ^4

Sirreferencetotheidentity.Ididnotget6whenisubstituteα=1,β=2,γ=3forα5+β5+γ5andigot256forα4+β4+γ4

Commented by MJS last updated on 21/Jul/19

((25)/6) is the right answer  I′ll look into it again

256istherightanswerIlllookintoitagain

Commented by Tawa1 last updated on 21/Jul/19

Okay sir,  God bless you sir.      That means the identity is correct for   α^4  + β^4  + γ^4  = ((25)/4)

Okaysir,Godblessyousir.Thatmeanstheidentityiscorrectforα4+β4+γ4=254

Commented by MJS last updated on 21/Jul/19

yes

yes

Commented by MJS last updated on 21/Jul/19

(1/6)×1^5 −(5/6)×1^3 ×2+(5/6)×1^2 ×3+(5/6)×2×3=  =(1/6)−((10)/6)+((15)/6)+((30)/6)=((36)/6)=6  you′ll have to check your calculation for typos

16×1556×13×2+56×12×3+56×2×3==16106+156+306=366=6youllhavetocheckyourcalculationfortypos

Commented by Tawa1 last updated on 21/Jul/19

Wow great sir. God bless you sir.

Wowgreatsir.Godblessyousir.

Commented by Tawa1 last updated on 21/Jul/19

One more thing sir. How do you get the identity sir.  when you are less busy

Onemorethingsir.Howdoyougettheidentitysir.whenyouarelessbusy

Commented by MJS last updated on 21/Jul/19

I′ll repost this as a new question plus answer  plus explanation

Illrepostthisasanewquestionplusanswerplusexplanation

Commented by Tawa1 last updated on 21/Jul/19

Wow great. I will learn from it

Wowgreat.Iwilllearnfromit

Terms of Service

Privacy Policy

Contact: info@tinkutara.com