Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 59526 by Mr X pcx last updated on 11/May/19

calculate ∫_0 ^1    (dx/(2sh(x)+3ch(x)))

calculate01dx2sh(x)+3ch(x)

Commented by maxmathsup by imad last updated on 12/May/19

let I =∫_0 ^1    (dx/(2sh(x)+3ch(x))) ⇒I =∫_0 ^1    (dx/(2((e^x −e^(−x) )/2) +3((e^x  +e^(−x) )/2)))  =∫_0 ^1  ((2dx)/(2e^x −2e^(−x)  +3e^x  +3e^(−x) )) =2∫_0 ^1    (dx/(5e^x  +e^(−x) )) =_(e^x =t) 2    ∫_1 ^e     (dt/(t(5t +(1/t))))  =2 ∫_1 ^e     (dt/(5t^2  +1)) =_((√5)t =u)    2  ∫_(√5) ^(e(√5))      (du/((√5)(u^2  +1))) =(2/(√5)) [arctan(u)]_(√5) ^(e(√5))   =(2/(√5)){arctan(e(√5))−arctan((√5))}

letI=01dx2sh(x)+3ch(x)I=01dx2exex2+3ex+ex2=012dx2ex2ex+3ex+3ex=201dx5ex+ex=ex=t21edtt(5t+1t)=21edt5t2+1=5t=u25e5du5(u2+1)=25[arctan(u)]5e5=25{arctan(e5)arctan(5)}

Answered by MJS last updated on 11/May/19

∫(dx/(2sinh x +3cosh x))=2∫(e^x /(5e^(2x) +1))dx=       [t=(√5)e^x  → dx=(dt/t)]  =((2(√5))/5)∫(dt/(t^2 +1))=((2(√5))/5)arctan t =((2(√5))/5)arctan (√5)e^x  +C  ∫_0 ^1 (dx/(2sinh x +3cosh x))=((2(√5))/5)(arctan (√5)e −arctan (√5))≈.230292

dx2sinhx+3coshx=2ex5e2x+1dx=[t=5exdx=dtt]=255dtt2+1=255arctant=255arctan5ex+C10dx2sinhx+3coshx=255(arctan5earctan5).230292

Commented by maxmathsup by imad last updated on 13/May/19

thanks sir mjs .

thankssirmjs.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com