All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 59526 by Mr X pcx last updated on 11/May/19
calculate∫01dx2sh(x)+3ch(x)
Commented by maxmathsup by imad last updated on 12/May/19
letI=∫01dx2sh(x)+3ch(x)⇒I=∫01dx2ex−e−x2+3ex+e−x2=∫012dx2ex−2e−x+3ex+3e−x=2∫01dx5ex+e−x=ex=t2∫1edtt(5t+1t)=2∫1edt5t2+1=5t=u2∫5e5du5(u2+1)=25[arctan(u)]5e5=25{arctan(e5)−arctan(5)}
Answered by MJS last updated on 11/May/19
∫dx2sinhx+3coshx=2∫ex5e2x+1dx=[t=5ex→dx=dtt]=255∫dtt2+1=255arctant=255arctan5ex+C∫10dx2sinhx+3coshx=255(arctan5e−arctan5)≈.230292
Commented by maxmathsup by imad last updated on 13/May/19
thankssirmjs.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com