Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 59563 by aliesam last updated on 11/May/19

Commented by aliesam last updated on 11/May/19

thank you sir

thankyousir

Answered by MJS last updated on 12/May/19

∫((sin^(−7)  x)/(cos^3  x))dx=∫(dx/(sin^7  x cos^3  x))=       [t=sin x → dx=(dt/(cos x))]  =∫(dt/(t^7 (1−t^2 )^2 ))=∫((1/(4(1−t)^2 ))−(1/(4(1+t)^2 ))+(2/(1−t))−(2/(1+t))+(4/t)+(3/t^3 )+(2/t^5 )+(1/t^7 ))dt  and now it should be easy

sin7xcos3xdx=dxsin7xcos3x=[t=sinxdx=dtcosx]=dtt7(1t2)2=(14(1t)214(1+t)2+21t21+t+4t+3t3+2t5+1t7)dtandnowitshouldbeeasy

Commented by malwaan last updated on 11/May/19

but your solution is very short  Can you make steps please?

butyoursolutionisveryshortCanyoumakestepsplease?

Answered by tanmay last updated on 12/May/19

∫(dx/(sin^7 xcos^3 x))  ∫(dx/(tan^7 x×cos^(10) x))  ∫((sec^2 x×sec^8 x)/(tan^7 x))dx  ∫(((1+t^2 )^4 dt)/t^7 )  [t=tanx]  ∫((1+4c_1 t^2 +4c_2 t^4 +4c_3 t^6 +t^8 )/t^7 )dt  ∫t^(−7) dt+4∫t^(−5) dt+6∫t^(−3) +4∫(dt/t)+∫tdt  (t^(−6) /(−6))+4×(t^(−4) /(−4))+6×(t^(−2) /(−2))+4lnt+(t^2 /2)+c  ((−1)/(6(tanx)^6 ))−(1/((tanx)^4 ))−(3/((tanx)^2 ))+4ln(tanx)+(((tanx)^2 )/2)+c

dxsin7xcos3xdxtan7x×cos10xsec2x×sec8xtan7xdx(1+t2)4dtt7[t=tanx]1+4c1t2+4c2t4+4c3t6+t8t7dtt7dt+4t5dt+6t3+4dtt+tdtt66+4×t44+6×t22+4lnt+t22+c16(tanx)61(tanx)43(tanx)2+4ln(tanx)+(tanx)22+c

Commented by malwaan last updated on 12/May/19

thank you sir

thankyousir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com