Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 59581 by Rasheed.Sindhi last updated on 12/May/19

Determine a , b , c in terms of α , β , γ.                 ab+c=γ                  bc+a=α                  ca+b=β

Determinea,b,cintermsofα,β,γ.ab+c=γbc+a=αca+b=β

Answered by mr W last updated on 13/May/19

if α=β=γ=0, ⇒a=b=c=0 or −1  if α=β=γ=2, ⇒a=b=c=1 or −2  if α=β=γ=k, ⇒a=b=c=((−1±(√(1+4k)))/2)  otherwise:  a^2 b+ac=aγ  −(iii):  (a^2 −1)b=aγ−β  ⇒b=((aγ−β)/(a^2 −1))  a^2 c+ab=aβ  −(i):  (a^2 −1)c=aβ−γ  c=((aβ−γ)/(a^2 −1))  put into (ii):  (((aβ−γ)(aγ−β))/((a^2 −1)^2 ))+a=α  βγa^2 −(β^2 +γ^2 )a+βγ+a^5 −2a^3 +a−αa^4 +2αa^2 −α=0  ⇒a^5 −αa^4 −2a^3 +(2α+βγ)a^2 −(1+β^2 +γ^2 )a−(α−βγ)=0  ......?

ifα=β=γ=0,a=b=c=0or1ifα=β=γ=2,a=b=c=1or2ifα=β=γ=k,a=b=c=1±1+4k2otherwise:a2b+ac=aγ(iii):(a21)b=aγβb=aγβa21a2c+ab=aβ(i):(a21)c=aβγc=aβγa21putinto(ii):(aβγ)(aγβ)(a21)2+a=αβγa2(β2+γ2)a+βγ+a52a3+aαa4+2αa2α=0a5αa42a3+(2α+βγ)a2(1+β2+γ2)a(αβγ)=0......?

Answered by ajfour last updated on 12/May/19

c=γ−ab  b(γ−ab)+a=α  a(γ−ab)+b=β  a+b=((α+β)/(1+γ−ab))  a−b=((α−β)/(1−γ+ab))  (a+b)^2 −(a−b)^2 =4ab  ⇒  (((α+β)^2 )/((1+γ−ab)^2 ))+(((α−β)^2 )/((1−γ+ab)^2 ))=4ab  let  ab=x , α+β=s , α−β=d  s^2 (1−γ+x)^2 +d^2 (1+γ−x)^2 =4x(1+γ−x)^2 (1−γ+x)^2   quintic  , ab=x  Now   2a=(s/(1+γ−x))+(d/(1−γ+x))                 2b=(s/(1+γ−x))−(d/(1−γ+x))   .                  c=γ−x .

c=γabb(γab)+a=αa(γab)+b=βa+b=α+β1+γabab=αβ1γ+ab(a+b)2(ab)2=4ab(α+β)2(1+γab)2+(αβ)2(1γ+ab)2=4abletab=x,α+β=s,αβ=ds2(1γ+x)2+d2(1+γx)2=4x(1+γx)2(1γ+x)2quintic,ab=xNow2a=s1+γx+d1γ+x2b=s1+γxd1γ+x.c=γx.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com